1394
Open Host Controller Interface
Specification

Release 1.1
January 6, 2000

Copyright © 1996-2000 by the Promoters of the 1394 Open HCI.

1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Page ii Copyright © 1996-2000 All rights reserved.

PREFACE 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

PREFACE

Notice

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE. Apple Computer, Inc., Compaqg Computer Corporation, Intel Corporation, Microsoft Corporation,
National Semiconductor Corporation, Sun Microsystems, Inc., and Texas Instruments, Inc. disclaim all liability,
including liability for infringement of any proprietary rights, relating to use of information in this specification. No
license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein. Except
that a license is hereby granted to copy and reproduce this specification for internal use only. *Third-party brands
and names are the property of their respective owners.

Copyright © 1996-2000 All Rights Reserved. Apple Computer, Inc., Compaq Computer Corporation, Intel

Corporation, Microsoft Corporation, National Semiconductor Corporation, Sun Microsystems, Inc., and Texas
Instruments, Inc.

Intellectual Property

Implementation of this Specification is governed by the terms of the 1394 Open Host Controller Interface Patent
License Agreement.

This specification may contain and sometimes even require the use of intellectual property owned by others.

Rights to such intellectual property are not conveyed except as provided by the 1394 Open HCI Promoters agree-
ment and the 1394 Open HCI Adopters agreement.

Information

An on-line copy, updates, and notices regarding this specification will be maintained on the following web sites:
http://developer.intel.com/technology/1394/specs.htm

http://www.microsoft.com/hwdev/1394/#Specs

Questions, comments, and issues concerning this document should be directed to the 1394 Open HCI reflector:
1394ohci-l@austin.ibm.com

Copyright © 1996-2000 All rights reserved. Pageiii

PREFACE 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Promoters

The Promoters of record on January 6, 2000, the date of publication of the 1394 Open Host Controller Interface Specifi-
cation, Release 1.1, are:

Apple Computer, Inc.

Compag Computer Corporation
Intel Corporation

Microsoft Corporation

National Semiconductor Corporation
Sun Microsystems, Inc.

Texas Instruments, Inc.

Contributors

The Open HCI 1.0 specification was developed using Apple ComplRelésdesign as a starting point. Theele
contributors were Jim Baldwin, Kevin Christiansen, Nikhil Jayaram, Michael Johas Teener and Rahoul Puri. The original
Editor of the 1394 Open HCI specification up through Draft 0.7, was Michael Johas Teener.

This specification is a derivative of the 1394 Open Host Controller Interface specification Release 1.00. The 1394 Open
HCI Release 1.00 key contributors were Eric W. Anderson, Richard Baker, Joe Bennett, Mike Eneboe, John Fuller, Jerry
Hauck, Diana Klashman (Editor), Robert Macomber, Rahoul Puri, Michael Johas Teener, Peter Teng, Scott Smyers, Erik
Staats, Lee Wilson, (Chair), and David Wooten.

The following is a list of key contributors to the 1394 Open Host Controller Interface Release 1.1 specification.

Lee Wilson,Chair
Steve BardCo-Vice-Chair
John Fuller Co-Vice-Chair

Neil Morrow, Editor

Eric W. Anderson
Richard Baker
David Hunter

Diana Klashman

Robert Macomber
Mike Musciano

Peter Teng
David Wooten

Page iv Copyright © 1996-2000 All rights reserved.

Table of Contents 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table of Contents

[A N iii
N[0 [T iii
Intellectual Property
[[2) 0158 0=\ 110 o [

g (011 010] (=T =P
(7o) 1 (5] o1V (0] =R

=1 o] (ST o) @0) £ 21 £ v

] A T 10 PO Xiii

1= A0} 1= o] 13 XVili

I 100 o [T o o T 1

1.1 Related documents
L.2 OVEBIVIBW ...t ettt et e e e e e et e e e et e e e e et e e e et eeesaaaiaeaes
1.2.1 Asynchronous functions
1.2.2 ISOCHIONOUS TUNCLIONS . ..ovtiiiiiiti et e et e e et e e e e et e e e e e et e e e s et s es———— 1 e e e eeen
1.2.3 MiISCElAaN@OUS TUNCLIONSciuviiiiiiie ettt e e e e e e e e et e e e s be e mmmmmmm et e e e erbnses 2
1.3 Hardware deSCHIPIIONu i e eieeeeieie e e e e s e e e e et e e e e e e e e e ae e aeeeeeeeeeeee s mmmmnn
1.3.1 Host bus interface

L.BL2 DMA e

1.3.2.1 Asynchronous tranSmMit DIMA oo e e e e e s e e e e e et e e e e e eeneannnn s 4

1.3.2.2 Asynchronous reCeIVE DIMAooiiiiii it e e e et s e e e e e e et b e nnenes 5

1.3.2.3 1SOChronouSs tranSMIt DIMAuueuieiiiitiiiitiieeieeieeeee bbbt be s s e s besbeeeeeeeeneeeeees 5

1.3.2.4 1SOChrONOUS rECEIVE DIMAuuiiiiiiiiiiiiiiiiitieiietbe ettt ettt ettt e et e ee ettt eeeeeaeeaeeaeeeesssamanmmmnmnnne s 5

1.3.2.5 Self-ID FECEIVE DIMIA ...ttt ettt te et eteese e eeeeneeeeeeeeeeees 5

1.3.3 Global unique ID (GUID) INTEITACEcceeiieeeiiiee et ee e e e e e s e s 5
B e 1 O 1 PP PPPUPPPPPPPPP 6

1.3.4.1 Asynchronous transSmit FIFOS........cciiiiiiiiiiii e e e e e e e e e e eeean s 6

1.3.4.2 Isochronous transmit FIFO e e 6

1.3.4.3 RECEIVE FIF O S ..ottt ettt 1111118 6
3 N o PP PPPPPPPPR 6

1.4 SOftware INLErfACE OVEIVIEWcooiiiiiie it 8
I LT 1] (= SO 8
N 1V N o o =Y = o) o PP 8
R B 1 o =T 4 (U o £ PP PPR 8

1.5 1394 Open HCI Node Offset (AAreSS) Mapccuuuuuiiiieeeiiiiiiiiiie s s e e e e et s s e e e e e eee et s seeeeseeeeennnnssnnns 9
1.6 SYSIEM REQUITEIMENTS ...iiiiiiiiiiii e e e e e e ettt e e e e e e e e e e s e e e ee e e e e et aa e e e e e e et eaessta e e mmmm———— et ettt s 10
R A 2N 1T T3 0= 0 O 10
A I T - - YT g T =Y 0 10

1.7.2 Memory structure and buffer alignment...........coooiiiiiiii e e m— 10
2. Conventions - NOtatioN @Nd TEIMSoooi i e e en e a e e a e e e 11

722080 I [0} -4 o S
2.1.1 Conformance glossary
2.1.2 Numeric Notation
28 G 31 = 1 N[0} 7= 14 [0 o T
2.1.4 Register Notation

Copyright © 1996-2000 All rights reserved. Pagev

Table of Contents 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

A N R = =T Lo AT (Y = To 1S (= PP 12
2.1.4.2 Set and Clear registers
2.1.4.3 Register Reset Values
2.1.4.4 Reserved fields
2.1.4.5 RESEIVEA FTEUISTEIS ..iiiiieiiiie e et e et et s e e e et ettt e e e e e e e e et eeeeeeeeeetaansn e e e e s en—
2.1.4.6 Register field notation
2.2 Terms

3. CommON DMA CONIOIEE FEATUIES ... cieeiiiee ettt et e e e e e et e e s et e e aan e e s s mmmmmmm——mm—t s eensesbnsesaeeen 17

T3 R 011 1=l =T 0 £ (= PP
3.1.1 ContextControl register

3.1.1.1 CONEXICONTIOLIUN ...eeiiiiiie ittt e e e s et e e e e e e seenmre e e eeeees 20
3.1.1.2 CONEXICONIIOLWEAKEeeeiiiieiiiiiiteiie ettt e e e enesmmmmmme e e 20
3.1.1.3 CONtEXICONIIOLACTVEot e e e e e ettt e e e e e e eeeetataaaeeaaaaenes 21
170 I I 00191 (=)' ({ @Fo 11 0] W [T- To F S 21
3. 1.2 COMMIANA P TG S O ...ttt s st smssmeenb bbb ennne 22
T A R = - To Y - 1 [0[RP PPPPRTPR 23
R T I 1Y = T = Vo 1= 1= o | A PP PTT R 23
3.2.1 SOftWAIE BERAVIOTottt e e e et ettt e e e e e e eeeeeemmmmmsanaaeeeeaeenes 23
3.2.1.1 Context INItIANZATIONeeeiee e e e et e a e e eeeneaa s 23
3.2.1.2 Appending t0 RUNNING LISTooiiiiiiiiii e e e e e ee et eeeeeeenamnae 23
T e] (] o o 1T o = T 001 1 1= PR 23
3.2.2 HArdWare BERNAVIOKc..uuuiii ettt ettt e e e e e e et te e e e e e e e e s emmemmmmmmmmmmt e e eeenn s 23
3.3 ASYNCRIONOUS RECEIVE.ot e e ettt e e e e e e eem e e e e eeeanbnnn e aeeaeas 25
3.3.1 FIFO Implementation (INFOrMALtIVE)coii i s 25
3.3.1.1 Unrecoverable Error (infOrmatiVe)oouuueeiiiiiiieei e 26
3.3.2 Ack COdeSs fOr WIHEE REQUESTSuiie ettt e e e e e et e e e e e e e e aeeaaa e ens 26
.3 B POSTEA VWIS ..ttt oottt e e e e e e ettt e e e e 22 e e et e et s ae s —— 1111111 27

R IR B L= 1 =SSP
3.4 DMA Summary

o S To 1S3 (= = To [0 | (=151 [T TSP 29
4.1 DMA Context NUMDEr ASSIGNMENTScoiiiiiiiii ettt e et e e e e e e e ee ettt e e e e e e e e ee s emmmmmmmmmmne e eesees 30
A S = To 1Sy (= Y= T TSR 30

I TV @ o 1T o I o (O B S =T 153 =] =SSP 35

5.1 Register Conventions
I =T (=Y (o] g I =T oIS (= TP
5.3 GUID ROM register (optional)
O N I = ([T R Lo 1] (] TSP
5.5 AULONOMOUS CSR RESOUICESottt ettt e et e et e e e e s e e reraa e e e e e
5.5.1 Bus Management CSR Registers
5.5.2 CoNfig ROM NEAUETttt ettt e e e e et e et et b eeeaneeeseaaeeeenes
5.5.3 Bus identification register
5.5.4 Bus options register
5.5.5 GIlobal UNIQUE ID ...ttt a e e e e e
5.5.6 Configuration ROM mapping register
I Y =T g To [o] gl | B I =T 1= = U TP
5.7 HCControl registers (set and clear)
B.7. 1 NOBYLESWAPDALA. ... ittt ettt e e et e e et e et eeammmaeannmn e eeeaa e eaee
5.7.2 programPhyEnable and aPhyEnhanceEnable ... e 48....

Page vi Copyright © 1996-2000 All rights reserved.

Table of Contents 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5.7.3 LPS and INKENGDIE........ccoii ettt mm oo mmeme e 49
5.8 Bus Management CSR Initialization REQISTEIScooiiiiiiiiiiiie e e eeeemmn e 50
5.9 FairnessControl regisSter (OPIONEAL)ocooiiiiiiiitiiib ittt e — e
5.10 LinkControl registers (set and clear)
5.11 Node identification and StAtUS FEgISTEI r e e e e e e e eeeereeeeereeeees 53
5.12 PHY CONLIOI FEQISTEI ...ceeiiiiiiiiiiieeeee e 54
5.13 Isochronous Cycle TIMEr REGISIENc.oiiiiiiiiiiiiii 55
5.14 AsSynchronous REQUESTE FIILEISot e ettt e e e e emmmemmnmmmmmmme e e eeeeannn s 55
5.14.1 AsynchronousRequestFilter Registers (set and Clear)c.uvvviiiiiiiiiiii e, 55....
5.14.2 PhysicalRequestFilter Registers (set and Clear)..........oooiiuiiiiiiiiiiie e e 57
5.15 Physical Upper Bound register (OPtiONAl)oooooiiiiiiiii e e emn e 58
O 1 (=T (] o] £ PR PR 61
6.1 INtEVENE (SEL AN CIEAI) ... i iiieeeiiii i e e e e e e e ettt e e e e e e e e e e te s m—— 1t 211 s e e e s
L I A o T] =TT PP
I 1Y =TS S 7= = U Lo [o [T)
6.3 IsochTx interrupt.registers
6.3.1 iISOXMILINTEVENL (SEL AN CIEAI)... .. i i ieeeeeeeie e e e e e e e e e eeee e e e e e eeemnararnann s 66
6.3.2 iISOXMItINtMASK (SEt AN CIEAI)ieeiiiiiiii e e e e e e e e e e e e e aeeeeaenes 67
6.4 ISOCHRX INTEITUPL FEQISIEIS ... i iieeeeeeee et e et e e et re e e e e e e et ettt e e s e e e e ee s emmnmmmmmmmmasesss s eeeeeeeeennes 67
6.4.1 ISORECVINIEVENL (SEL AN CIEAN).....ciiieiiiieiie e e e e e e e e e e ee e e e e e enemannennn s 67
6.4.2 iISORECVINIMASK (SEt AN CIEAI)ivviiiiiii i e e e e e et ee e e e aeaereannes 68
A AN VA el o o) To 10 ESTN = V£ 0 1A 1Y P 69
7.1 AT DMA CONEEXE PTrOQIaIMIS .uiitii ittt et e et e et e et e e et e et e eea e e e tt e e e e s mmmmmm——— e b e e ean 69
% R O 1 I o W B V@] 2 4 o F=T o T o) (oI 70
7.1.2 OUTPUT_MORE_ImMmediate deSCIIPLONuuuuiiiiieiieieiiiiiie e e e ee e et s s s e e e e e e eetatan e e e e e e eee s wmmmmmnns 71.
A O LU i = U B I NS o =Yoo (o] 72
7.1.4 OUTPUT_LAST_Immediate deSCIPLON ...cciivieeiiiieieeeieeeeiiiie i e e e e e e ee et s s e e e e e e eeeraaa e e s e e e e s smeennnnns 74
7.1.5 AT DMA 0ESCIIPION USAUE ..uuu i ieeietierititiie et eeeeeteattat s s eaeeteaeasttan s aaeaeeeestesnn e aeeaereeasnnaareeeaessnsnnnsn 76
7. 1.5.1 COMMEBNU.Z ..ottt ettt ettt ettt ettt ettt ettt e e e et et et e et ermmm—— 1 76
7.1.5.2 CommMaNd.XfErStatUScooiiiiiiiie e ———— 76
7.1.5.3 ComMmMaANd.tiMESTAMP ...ceviiiiiiiii i e e e r e e e e e ettt e e e e e e eeeaeteaa s aeeeeeaeaeennnnnnnnn 76
7.1.5.3.1 timeStamp value for REQUESTS........ccovuuiiiiii e e e e enees 11.......
7.1.5.3.2 timeStamp value for PiNg REQUESESc.uvuiiiiiiieiiieeiiis e e eeeeeeieiesn e eeeeeeesnnnns dlaee e
7.1.5.3.3 timeStamp value fOor RESPONSEScoivviiiiiiiii it e e e e e e e e A/
7.2 AT DMA CONEXE TEOISTEIS ..eiiiieiiiie i i e e e et ettt e e e e e e e et e e et e e et ee ettt e e eaeeeestesnes ss e smmmmm——————— e e e e e eesesnnnan
7.2.1 COMMANAPE bbb
7.2.2 ContextControl register (set and clear)
7.2.2.1 Writing status back to context command deSCrPLOrSccoevveeveiiveiiiiiie e ... 8
T.2.3 BUS RESEL ...ttt ettt oot e e et et et et et e e e mmmmmm———m——— e e e e e e e e 81
7.2.3.1 Host Controller BENaVIOr fOr AT ...ttt eeeeeeeeeeeeaaeas 81
7.2.3.2 SOftWAre GUIEINES ...t s+ s—— 81
ARG - Uod Qo - = N = 1 (o 82
A B =1 1= OO PPPPPP 82
7D BT I S S oottt ot ettt oottt bttt st £t 5 £ £ ¢ S——— 4111411111111t e 1t e e e e e e e s 82
A S 2 =T 4 T 0) PN 83
A A X I a1 1= LT 13T [83
e I A L= L= o T £ PSP 84
7.8.1 Asynchronous TranSmMit REQUESTScciiiiiiiiiiiiee e e et e e e e e e e e e e e eeeaent s eeenmnanneeees 84
7.8. 1.1 NO-AAA trANSIML.....eeiiiiiiiiiiiiiiiiii ettt e e e e e e e e s 84

7.8.1.2 Quadlet transmit

Copyright © 1996-2000 All rights reserved. Page vii

Table of Contents 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

7.8.1.3 BIOCK TraNSIML .. .uuuiiiii e e e e ee ettt e e e et s e e e e e e et s s e e e e e e e eea e e e eeeeeeesesss s —— s 87

A T R o o D o T Tt (= A = L 1= 0 89
7.8.2 Asynchronous TranSmMit RESPONSESiiciiiiiieiieiii e e e et e e et et e e e e e e e e ete e smmmmmma e eennes 89

A< T R VLo B -) = T 1 =T = o] SR

7.8.2.2 QUAAIET traANSIMIE ...uu it e e e e et e e ettt e e e e et e s s temmmmmmm——— e nans

A = T2 B =] (o T3 Q= U1 1 L S

7.8.3 Asynchronous Transmit Streams

8. ASYNCHIONOUS RECEIVE DIMAot e et oo e et e et e e et et e ettt ee e e e et e e tetee e s e eaeaeeeeenenmnssnsa e aeeeeeesnnnnnnnas 95
8.1 AR DIMA CONTEXE PrOQIaIMIS ... it ieiieiii ettt et e et e e e e et e et e et s eeta s e et e e etn s e e namn s annean e eeneeenes 95
S0 0 1\ = W Y@ T 4 e =T] o) oI 95
8.1.2 AR DMA dESCIIPION USAQE .. i iieiiiieiiiii i it eeeieeeetttee s e e e aeeeeeaaaaaseeaeeaeeeaetenn s aaaeeeeeestssnmnannaeennanseeenes 96
8.2 DUMFEIFIIl MOTE ...t e e e s e e e s s e s e e e e e e e s e n s rnneeeeeenna 97
8.3 Asynchronous Receive CONtEXt REGISTEIS.uiiiiiiiiiiiiiiiiii e 97
8.3.1 AR DMA COMMANAPIE FEQISTEN ...ttt ettt ettt ettt et et e e e et e e e e e aaaaaaaaaaaaaeas 97
8.3.2 AR ContextControl register (Set and CIEAI)ccooiiii it e 98
8.4 AR DIMA CONTIOIIBE ..ttt ¢ S— 11411411211 n e 98
8.4.1 ASYyNChronous Filter REGISTEISttt e e et e e eeeteeeeeeeeaeeneeneeeneensrrrees 98
8.4.2 AR DMA CoNtroller PrOCESSING ...cciiiiiiiiiiei et —————_ 99
8.4.2.1 AR DMA Packet Trailer -
8.4.2.2 ErrOr HaNGIING ...ttt ——
8.4.2.3 BUS RESEE PACKETueiiiiiiiiiiiie et ———
8.5 PHY PACKETS ...ttt s e ¢ ——
8.6 ASYNChron0oUS RECEIVE INTEITUPLS ...ttt e e e e e ettt e e e e e e e e e ee e e mmmmeeaaaeeeeaaaeeees
8.7 Asynchronous Receive Data FOMMALScoooiiiiiiiie e e e e e e e 103
8.7.1 ASynchronous ReCEIVE REQUESTS.......ouiiuiiiiii e eeemm e 104
8.7. 1.1 NO-UALA MBCRIVE....ceiiiiiiiiiieiie ettt 104
8.7.1.2 Quadlet Receive .104
8.7. 1.3 BIOCK MBCRIVE ... e 106
8.7.1.4 PHY PACKEL FECEIVE ...ttt e et ettt e e e e e e e e s mmmmmmmmmnn o 107
8.7.2 Asynchronous ReCEIVE RESPONSESco.uuuuuiiiii ittt e e e ee e eeeeeeeenmanee 108
8.7.2.1 NO-UALA MBCRIVE.....eiiiiiiiiiieiit ettt e 108
8.7.2.2 Quadlet Receive .108
8.7.2.3 BIOCK BRIV ... 109
9. 1SOChronoUS TranSIMIt DIMA ... bk e e e ee e e e et e et e et et e e e e e e e e e eeeaens 111
9.1 IT DIMA CONEEXE PIOGIAIMS ...ttt ettt ettt ettt ettt e et e e e e et e e e et ta e e e eetaa e e e e s s mmmmmsmm 2122 e e 111
9.1.1 IT DMA command deSCrPLOr OVEIVIEWeuuuuii e ettt e e e e ettt e e e e e e e e eeeat e e e e e e e eeeeeees 111
9.1.2 OUTPUT_MORE ESCIIPLON ... ettt ettt e e e e e e e e e tt e e e e e e e e eaesbbnnaaeeaaaaeas 112
9.1.3 OUTPUT_MORE-IMMediate AeSCIIPION. ittt e e e e e s 113
9.1.4 OQUTPUT _LAST AESCHIPION ..ttt e ettt ettt e ettt e e e e e e e e e e e e e e e e e e ee memmmmmmmmmmn e e 114
9.1.5 OUTPUT_LAST-Immediate deSCIIPLOLui ettt e e ee e 115
9.1.6 STORE_VALUE descriptor
LI A B I B 1 VN0 [T o] o (o] g U EST= Vo = TP PUPUPTRTR
9.2 IT CONEXE REGISIEIS ...ttt e e ettt e e e e e e et ettt e e e e e e e e e ee s e ammmmmnnnn
9.2.1 COMMEANAPE .ottt e e
9.2.2 IT ContextControl Register
9.3 Isochronous transSmMit DMA CONTIOIETuuuuiiiiiiiiiiiiiiiii bbb e emesnennnn e e 120
O.3.1 IT DIMA PrOCESSING ... eeiieeititi e ettt e e e e e e ettt e e e e e e e e ee ettt ae e e e e eeeeestenneeeee s amemmmmmnmmnm e eeeeeenes 121
9.3.2 PrefetChing [T PACKELS ... oo et e e e e e e e e eeeeennmmmmmmm e e e eeeeees 122
9.3.3 Isochronous TranSMit CYCIE LOSS ...uuuuniiiiiiiiiieiie ettt e e 122
9.3.4 SKip Processing OVerflOWoooiiiiieiii et e e emmmmmmmmmme e 123

Page viii Copyright © 1996-2000 All rights reserved.

Table of Contents 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

LIRS TN o (@ B U T =1 ¢ (U o DU UPPPPRRRRR 124
9.3.6 Determining the number of implemented IT DMA CONEXES.........uuuuriiiiiriiiiiiiiiiiiiiiieeeeeee e 5. 12
9.4 Appending to an IT DMA CONEXE PrOGIaIMcoooiiiiiiiiaieeie e 125
SRRl I I g1 (=T U] o] SO P TP UUPR USRI 125
9.5.1 cycCleINCONSISTENT INTEITUDTttt e e e e e e eneenees s e e e eas 125
9.5.2 DUSRESEL INTEITUPDL ...ttt e e e e e e e e et e tta e e e e e e eeeesaeemmeemnmmmmn e e eeeeeennnns 125
9.5.3 UNrecoverableError INTEITUPLcooi et e e e ee et e e e e e e s eemmememmmmmmmeeeeees 126
9.6 IT DALA FOIMIAL eeeee ettt e e e ettt e et oot ettt e e et b e e e e tea e e ee s aaaanemmanen e eeestnaaaesbnaaaes 126
10. 1SOCHIONOUS RECEIVE DIMA ...ttt oot e e et et ettt e e e e e e e e e et s nmmmmmmmmmmes s s e e e eeeeeeennnnnnss 129
10.1 IR DMA CONEEXE PrOGIAMSuiiieiiiietiiitis e ettt e e e et e e s ra e e e et e e e e s r e e s a e e e eenrae s 129
10.1.1 Buffer-Fill and Packet-per-Buffer DeSCIPLOrSoooieiiiiii bbb 129
10.1.2 DUAI-BUFFEI DESCIIPLOL ...ttt ettt e e e e e e ee et e s e e s e e 130
O I LY Tod g o o] Y 7= Y[1 132
10.2 RECEIVE IMOUES. ...ttt ettt ettt ettt ettt ettt ettt et ettt eeeeeee e e e et et e e et e s ommmmmmmmmmmmm s e e e e e e e e e e e e e e e ans 133
10.2.1 BUFFEr Fill MOE ... bbb e e s eesbeneeee 133
10.2.2 Packet-per-Buffer MOUEccoiiieiiiie e e s e e e s e e e e e e ee s nmmmmmmmmmmme e e enen 134
10.2.2.1 Command.xferStatus and Command.resCount UPAAatesSceevieeeiiriiiiiiiiiiieeeee et e e eeeeeaeanns 13!
10.2.3 DUAI-BUFFEI IMOUE ...t s e 112
10.3 TR CONEXE REQISIEIS ... iiieeiieitis e ettt st et e e e e et e e et ar e e e ee e et e aeansn s s e mm— 1 e e e e e e ees
10.3.1 COMMANAPIEuuiiiiiiiiiiiiiiiitietie et e e ee e e e e eeeeaeaeaaeaaeaaaaaeaaes
10.3.2 IR ContextControl register (set and clear)
10.3.3 Isochronous receive contextMatCh regiSterovvvviiiiiii i eee e e e emaaes 140
10.4 1sochronous receive DIMA CONLIOIIETuuiiiiiiiiiiiiiiitiiii bbb eeeeeeeeeeeaeeaeeeeeas
10.4.1 Isochronous receive multi-channel SUPPOIooooviiiiiiiiiii e s L
10.4.1.1 IRMultiChanMask registers (set and clear)
10.4.2 Isochronous receive single-channel SUPPOI.......cvi i i iiiiiicie e e e veeeeeemnnas 142
O B T8 o] [T%= 1o o = g 1 =Y £
10.4.4 Determining the number of implemented IR DMA contexts
O ST [g1 (=T ¢ (U] o] £ TP PPTR PP
10.5.1 cyclelNCONSIStENt INTEITUPLceviiieiiie e e e e e et e e e e e e ee e ae e b mmmmmmmm e e eas
O o 10 ESY = =TT [=T 1 0o)
10.6 IR DAt@ FOIMIALS......coeeetiiiieit ettt ettt e et e e et e et e et e et s e e e e e mremm—— 1 1t e e res
10.6.1 bUfferFill MOAE fOMMIELSuiiiiiiiiiiiiii e r———
10.6.1.1 IR With header/trailer..... ..o b s
10.6.1.2 IR Without he@deIMIIaIlerccuvviiiiiiiiiiii e,
10.6.2 Packet-per-buffer mode and dual-buffer mode formatscccccieiii i 145......
10.6.2.1 IR With header/trailer..... ..o e s 145
10.6.2.2 IR Without he@deIMIaIlercovviiiiiiiiiiiii e, 146
L1, SEIF ID RECEIVE ...ttt ettt ettt ettt et £ 2 e e e £ e aaeaaeaeaaens 147
11.1 Self ID BUffer POINtEr REQISIEI .. .ciiviiiii e e s e e e e et s s e e e e e e e s wemmmmmmm————— et 1s e as 147
11.2 Self ID Count Register
11,3 SEIF-ID FECEIVEuuuittiiiiiittieiieetetee ettt ettt ettt ettt et e et tetteeeeeeeeaaeaaeaeeeee e s s— ettt ettt et e eeeeees
11.4 Enabling the SEIfID DMAoouieii it e e e e ettt e e e e e e et e eet bt s e e e aeeesenaann s eeeeeseeaennes 149
11.5 Interrupt Considerations for SEIfID DMA ... e e e e et e e e e e e 149
11.6 SelfIDs Received Outside of BUS INILIAIIZALION.uuiiiiiiiiiiiiiiii e 149
D2 o V£ o LI =T LU =] £ PP 151
12.1 Filtering PhySIiCal REQUESEScuuiiiiii i e eee et s e e e e e e e e e e e ettt s s e e e ae e e e naaeeaaeeenanta s aeeeaaneenes 152

12.2 Posted Writes

Copyright © 1996-2000 All rights reserved. Page ix

Table of Contents 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

12.3 PhYSICAl RESPONSESt ieiiiiiiiiiii s it e e et e ettt e e e e e e et e ee e s e e e eeeee ettt tsaeeaeeeeessess s mennmmmmmmmnnssssn s seeeeeenes 152
12.4 PhysiCal RESPONSE REIIEScceiiiieiiiii ittt e e e e et et e e e e et e ettt e s e e e aeeeae s e e e aeeerenssrannaaeeees 152
12.5 Interrupt Considerations for Physical REQUESESuuiiiiiiiiiicie et e e e e e e eneaa s 152
12,6 BUS RSBttt n e s —————— et n e r s 152
R T 0 1o = U Lo = o T PP 153
13.1 CaUSES Of HOSE BUS EITOISoiiiiiiiiiiiiiiiiieie ettt s s s 153
13.2 Host Controller Actions When HOSt BUS ErTOr OCCUIS......uuuuutuiiiiiiiiieieiieeieeieeieeeeeeeeeeeeeeeeeeeeeseneeeeeesens 153
RS 700 R D T=YYod o) (o] gl === To I =1 o o] R
R (=T B £= LT R) (= o] PR
13.2.3 TranSmMit Data REAMT EFTONuuuuiiiiiiiiiiitiiiiiiitieiiettetbesbeebeseeseeseeseseeseeeaeeseeseeseeeeeeeaeeeeeeeeeeeenssnees
13.2.4 Isochronous TransSmit Data WItE EITOTuuuuuuuuiriiriiiiiriiiiirietiesiesiesiesieenesieseesieeeees ssaeaaennns
13.2.5 Asynchronous Receive DMA Data Write Error
13.2.6 Isochronous Receive Data Wt EITOr.........uuuuiii ittt eeeeeeeeemana
13.2.7 PhySIiCal REAM BTN ...ttt ettt e e e e e ettt eat e e e e e e e cmeemmmmmmmmmm e e e eeenees
13.2.8 Physical POSted WILE EFTOFcoieiiiitiiiiitiitiibtib bbb eeeeneenen
13.2.8.1 PostedWriteAddress Register (optional)
13.2.8.2 QUEUE RUIES ...t oottt e e e e e e e e ettt e e e e e aeaeeesnnnnnn
ANnnex A. PCl INterface (OPLIONAL)coooiiiiiiii ettt e et e e eemmm oot e e e e bt e e e e e e eeeeennnns 159
A.L PCl CONFIQUIATION SPACE ...ttt ettt et e e et e ettt bt e e e e e e e ee e et mmmm e eaaaaaeeeeeeeensnrnnnss 159
A.2 BUSMASEEIING REQUITEIMENTS ...ttt e et ettt e e e e e e e e e aeeata e e e e eaeaeeanmnmmmmnesnsn e ens 159
A.3 PCI Configuration Space for 1394 Open HCI With PCl Interface ... 159...
A.3.1 COMMAND REQIS O ..ttt iet it ettt et et oottt sttt et s st et s s te s st s s ss s s e s smmssmnsmnnnssnsen 160
A.3.2 STATUS REGISIET .. e ee e e e e e naeee e er e 161
A.3.3 CLASS _CODE REQISIEN ...ciiiieieeeeeee e e ane e 161

A.3.4 Revision_ID Register
A.3.5 Base_Adr_0 Register

A.3.6 CAP_PTR REQISTEI ...uii et e et e e e e e e eeeeeanenaman
A.3.7 PCI_HCI_CONtrol REQISIEN ...ttt ettt e+ mnmim £ 22 163
A.3.8 PCI Power Management Register INterface............uuiiiiiiiiiiiii e 163
A.3.8.1 Capability ID REQISIEN e e ettt e e e e e e e ee s emmnmmmmmmne e 163
A.3.8.2 Next Item Pointer Register (NXt_PIr) ... eemeees 163.
A.3.8.3 Power Management Capabilities RegiSter (PMC)cooo i 164
A.3.8.4 Power Management Control/Status (PMCSR)ouiiiiiiiiiiiiiiiiii e, 165
ALB.8.5 PMC SR B SE ... e 165
ALBLB.6 PIM_DATA .. ————— 165
A.4 PCl Power Management BERAVIOL ...t e et aaeeeees 166
A.4. L POWET SEAE TraNSITIONSuuuiitiiiiiiiiiiittitiitibeibe bbbttt e et e e ettt ettt et e et e e s emn———— e 166
A.4.2 POWer State DefiNitiONS..........eiiiiiiiiiiiiiii et 167
ALA.3 PCIPMEH SIgNAI ...ttt s ——— e 168
A.5 PCI Expansion ROM for 1394 OPeN HCl......uuuuiii e 169
ALB PCI BUS EFTOIS ...ttt ettt e e ettt e et e e e et et e b s 11 e ettt e s 169
Annex B. Summary of Register Reset Values (INfOrmatiVe)coooiiiiiiiiiiii e 171
Annex C. Summary of Bus Reset Behavior (INfOrMatiVe)cooiiiiiiiiiii e ee e e 177
L OVBIVIBW ..t —— 11111111 e 11 e e e e e ee s

C.2 Asynchronous Transmit: Request & Response
C.3 Asynchronous Receive: Request & Response .
C.4 ISOCNIONOUS TraNSIMIIT ..ottt ee ekt r— 4412222222220

Page x Copyright © 1996-2000 All rights reserved.

Table of Contents 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

C.5 ISOCNIONOUS RECEIVE ...ttt oo ettt ettt et e e e e e e et tba e e e e e e aeeeann e e aaeaeeeeene 177
C.6 SEIf ID RECEIVE ...ttt e e et ettt e e e e e e e et ettt mmmmmmmmmmmomeeeee bbb e e aeaaeaeees 178
C.7 Physical REQUESIS/RESPONSESot e ettt bbb e eees 178
C.7.1 PRYSICAl RESPONSE ...cceiiiiiiiiieieeeee e ———— 178
C.7.2 Physical Requests
(O S o] ol 1 fo] I R =T o] (] £ TP
Annex D. IT DMA Supplement (INfOrMALIVE)oouuirii et e e s e eeemmmm e e e e e eeeaeenes 179
DI R I B 1 N 1= o T 1Y o PRSP 179
D.2 IT DMA FIOWCHAIT SUMMEIY ...ttt et e eeeeeeeeeeeeseeseeeeeas 179
D.3 DMA-SIde IT DMA FIOWCRAIT ... ettt e e e e e et e ettt s £ £ 2222222 ee 179
D.3.1 DMA-SIAE 10D Nalf ..ottt e e 181
D.3.2 DMA-side bottom Nalf ... et 181
D.4 LiNK-Side IT DMA fIOWCRAITuuuiiiiiiiiiiiiiiiititiieie ettt s s s £ 65t e e e 182
D 2 R T 1t T L= o o 1 1 = SRR 182
D.4.2 Link-side DOttOm Nalf...........ooiiiiiiiiiiiiie 184
Annex E. Sample IT DMA Controller Implementation (INfOrmative).............ceeeiiiiiiiiieiiiii e e 185
Annex F. Extended Config ROM ENLIIEScuuuuiiiiieiei st e ettt st s e e e e e e et es e e s e e e e ee sttt emmmmemannneseeeeeeeaesnnnnnnas 191
F.1 MiNi-ROM DaAta FOIMAL.ueiiiiiiiiiiiiiiiiiiiiiiie ettt ettt ettt ettt et ettt et ettt e ettt e eeeee e s sammammnt e e e e e e e e e aeeeas 191

Copyright © 1996-2000 All rights reserved. Page xi

Table of Contents 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Page xii Copyright © 1996-2000 All rights reserved.

List of Figures 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Listof Figures

Figure 1-1 — 1394 Open HCI conceptual bloCK diagramuuiiiiiiiiiiiiiiiiie e e e e e emmemmmmmmmme e s 3
(Lo UL T e Al N o To [T @ 1= 1Y =T o RSP 9
Figure 3-1 — ContextControl (set and clear) register fOrmMatooiuiiiiiiiiii i e ee e e ee e e eeeaeans 17
Figure 3-2 — CommandPtr register FOIMALouuiiiiiii e e e e e e e e e e eneeeeen s e s e eeaeneeee 22
Figure 3-3 — Flow Chart for Processing @ DMA CONEEXEcovvviiiiiiii e eireieiie i e eeeeeeteiss e e s e e e e e e s semmmmmmmmmmmms e e eeee 24
Lo UL R R YT € o T =T |] (=] (S SPPPPUR 35
FIgure 5-2 — GUID ROM FEOISIEN .. .cciiieiiiiiiie i e e e ee et et e e e ettt e s et e e et eeetttaasaeeeeeeesess s smmmmmmmmmmmms £ e s sasneeeeeeeeennnns 36
Lo UL SRR R I LY € T C TS (=T 1S3 (- PP 37
[Lo UL ST R R @8] o F= ¢= W €= 1S3 (=Y PP 38
FIgure 5-5 — CSR COMPAIE FTROISTEI ..uuuiiiiiiiiieiiiiisie e e e et ettt e s e e e e et e aet e e s e eeteeaette st eeeees meneemmmmmmmmatessnnsaeeeeseeesnnnns 39
FIQUre 5-6 — CSR CONIIOI FEQISIET .ivviiiiii i e e ee et e e et s e e e e et ettt s e e e e e ee e aettaa s e s emmmmenmmmmnmmeeseessstnnnssaeeaeeeenes 39
Figure 5-7 — Config ROM hEAUEI TEQISIEN . ..ivvviiiiiii i e eeie ettt e e e e e e et ettt s e e e e e e e e e s —— e eea2enas 40
FIQUIE 5-8 — BUS D FEOISTEI .evtuuiiie e e eeieeit e s e e e e ee s e e e e e e ettt se e e e e ee e ee e et st s e eeeee e e mammnmenmmmmm s eeeeeesessnnaneeeeeeeesnnnns
Figure 5-9 — Bus options register

Figure 5-10 — GlobalUNIQUEIDHI FEOISTETiieeiieeeiiiiee e e e e ettt s e e et e et s e e e e e e e e aesee s smmmmm—— s n e e e e e eeees 42
Figure 5-11 — GIlobalUNIQUEIDLO FEOISIENvvviiiie e e e eeie et es e e e e ettt ee e e e e e e et eaat e s e e e e e e e e et s mmmmm—— e e e e e e eeees 42
Figure 5-12 — Configuration ROM mMapping FEQISIETuvuuiiiie e eee e e e e e e e e e ae b s eeeemees s e e aeeeeee 44
Lo UL R R B RV o To [0 [D =T 1] (] PP
FIgure 5-14 — HCCONIIOl FEQISIET . .iiiieiiiiii it e et e e e e et s e s e e et e ettt saeeeeeeetesae s eeeenenmmmmaneeseeesstnnnaaaeaeeeenes
Figure 5-15 — Initial Bandwidth Available reQiSIErcccoiiiiieie e e e e e e s

Figure 5-16 — Initial Channels Available Hi register
Figure 5-17 — Initial Channels Available Lo register
Figure 5-18 — FairnessCOoNtrol rEQISIEToviviiiiiii e e e e e e e e eemmm s

FIgure 5-19 — LiNKCONIIOI FEOISTEI ...uuuuiiiieieieeieie e e et e ettt e e e e e e e et et e s e e e s mmmmemmmmmmm e e s eeseesnnnsaaeeaeaeenns

[To (U= Ro R I (N o o [T | I =T =3 (- PP

[To (UL Rl o o oo 1 o] =T 1S (=
Figure 5-22 — 1SOChronous CYCIE tIMEr FEOISTEI ...uuuuiii i ei e e e e e e e et e e nrree e e e e een e s aeeaeeeeaes
Figure 5-23 — AsynchronousRequestFilterHi (set and clear) regiStercvvviiiiiiiii i e e e e e e eeeeeees 56
Figure 5-24 — AsynchronousRequestFilterLo (set and clear) registercccccccviieiiiiieieieieviiiies e e eeeeeemennn . DO
Figure 5-25 — PhysicalRequestFilterHi (set and clear) regiSterccoiiviiiiiiiiiiiiii e e een s 57
Figure 5-26 — PhysicalRequestFilterLo (set and clear) regiSteruuciiiiiiie i 57
Figure 5-27 — 48-bit PhysiCal UPPEr BOUNGiiiiiiiiiiiiii it s e e et e ettt e s e e e e e e ee st e s cmmmmmmmmmmmas s e e e e e e e e
Figure 5-28 — Physical Upper BOUN FEQISTETuuuuiiiie it e et s e e e et s e e e e e e e e et are e e e e e eearra s aeeeeeeees
FIQUIE B-1 — INTEVENT FEOISIEN ... iiiiiieiiiiie e e et et e s e e e e et et r e e e eeeeeeaetean e eeeeeeeannaaneeeeeestnsnnnaneeeeeeeesnnnns
FIQUIE 6-2 — INEMASK FEOISTEI .oiuiiiiii i eie ettt e e e s e e e e e et e s e e e e et e e e tat e e e e e e s e emaemenann s seeeeeeeeannnnnnaeeeeees
Figure 6-3 — isoXmitintEvent (set and clear) register
Figure 6-4 — isoXmitIntMask (set and clear) register
Figure 6-5 — isoRecvIntEvent (Set and CleaAr) TEUISIENcciiviiiiiii i e e e em——— e aeae
Figure 6-6 — isoRecvIntMask (Set and CIEAr) FEQISTEIuiiiiiiiiiiice e e s em————— e eeee
Figure 7-1 — OUTPUT_MORE descCriptor FOIMALcocoiiiiiiiiiiii e e e s e e e e e e e e e e e e e e eennannn s
Figure 7-2 — OUTPUT_MORE-Immediate descriptor format
Figure 7-3 — OUTPUT _LAST desCriptor fOrMatc.cceeeiiiiiiiiiiii i et e e e e e e e e e e e e e e

Figure 7-4 — OUTPUT_LAST-Immediate descriptor fOrmatuuviiiiieiiiiieiiiis e
Figure 7-5 — timeStamp fOIMALcoiiiiiiii i e e e et s e e e e e e eeetet st anaeeeeeeseeesstnnn s aeeaeeeenes
Figure 7-6 — CommandPtr register fOIMALuuuiiiii e e e e e e e e eeneeeen s e e e eeeeneene
Figure 7-7 — ContextControl (set and clear) register format
Figure 7-8 — Completion Status and Retry Behavior
Figure 7-9 — Quadlet read request transmit fOrmatccovvvieiiiiiiiii e
Figure 7-10 — Quadlet write request transmit format
Figure 7-11 — Block read request transSmit TOrMALioiiiii i e e e e e e e erena e e e eeeeeaenns
Figure 7-12 — Write request transSmit TOrMALcoovuiiiiiiii e e e e e e e smmmmmmama———— s e e e e e eeaes
Figure 7-13 — Lock request transmit FOIMALuueiiiiii e e e e et sm—— e e e e e e e ees

Copyright © 1996-2000 All rights reserved. Page xiii

List of Figures 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Figure 7-14 — PHY packet transmit fOMMAatiiiiiiiiiicie e e e e s seeeeenmmmmmmme e e e e e e e e 89
Figure 7-15 — Write response transSmit fOMALuuuiiiiii i e e e e e e ne e e e anre e e e e e 89
Figure 7-16 — Quadlet read response transmit format .90
Figure 7-17 — Block read response transmit fOrMatccoiiiiiiiiiiiiiiiiii e e e e ——— e 91
Figure 7-18 — Lock response tranSmit TOMMIALciiiiiiiiiiieis s e e e e e e e e e e e e e e s rea e e eeee e 92
Figure 7-19 — Asynchronous stream packet fOrmMatooovviiiiiiii i e s eeee e e e e nenmmmm e e e eeeeaes 93
Figure 8-1 — INPUT_MORE desSCriptor FOrMALuuvuiiiiiiiiiiiiiiiii st s s s e e e e et s s s e e e e s cmmmemmmmmmmm s e e e eeerennns 95
Figure 8-2 — bUfferFill rECEIVE MOUEcoeiiiiiii it e e e e e e e+ m—— et e e e ee e aetnnn s 97
Figure 8-3 — CommandP1r regiSter FOIMALouuiiiiiii i e e et e e e s emmeeeeneeen st e e s eeeeeeenes 97
Figure 8-4 — AR ContextControl (set and clear) register formatcccooiiiiiiiiiiiiiiiii e 98

Figure 8-5 — AR DMA packet trailer FOrmMatooouiiiiiiiii e e e e s e e e e e en e e e e e e eeaareanas 100
Figure 8-6 — AR Request Context Bus Reset packet formatccceiiiiiiiiiiiiiiiiii e e s 101

Figure 8-7 — Quadlet read request reCeivVe fOIMALuuiiiiii i e e et ree e e s e e eeeenna e e e eeeeees 104
Figure 8-8 — Quadlet write request reCeIVE fOIMALcciiiiiiiiiiiiiir e e e e e e e e e e e e e eeeeees 104
Figure 8-9 — Block read request reCeive fOrMALoooiii i 105
Figure 8-10 — Block write request reCeive FONMALoooii i ——————— e 106
Figure 8-11 — Lock request reCeive fOIMALoouuiiiii et eeeeeemn e e e e e e eeeeees 107
Figure 8-12 — PHY packet r€CEIVE FOIMMALuuuiiiiiiiiiiiiiiiiie e s——_— et 107
Figure 8-13 — Write response reCeive fOMMAL ..o e e e e e e e e e e e e es 108

Figure 8-14 — Quadlet read response receive fOrmat ... s o 108
Figure 8-15 — Block read response receive format
Figure 8-16 — Lock response reCeiVe fOIMALcooiiiiiiiiii et eeeemneemne e e e e eeeaeean s
Figure 9-1 — OUTPUT_MORE command descriptor fOrmMatccoooiiiiiiiiiiiiioie e e eee e
Figure 9-2 — OUTPUT_MORE-Immediate descriptor fOrmatooooiiiiiiiiiie e s
Figure 9-3 — OUTPUT_LAST command descriptor format . .
Figure 9-4 — OUTPUT_LAST-Immediate command descrlptor format -
Figure 9-5 — STORE_VALUE GESCHIPION ..iiiiiiiie ittt bbbttt e s s s e e e
Figure 9-6 — CommandPtr register FOIMALooiiiiiii et e e e ee e e e e e e
Figure 9-7 — IT DMA ContextControl (set and clear) register format ...,
FIQUIE 9-8 — IT DIMA SUMIMIAIY .eetiuieeeeeeeeeiett e e e e e et ettt e e e e e et et it tbt o e e e et e e e tetbaa e e e eeeeeeeesmnmmnaaaaaseaeeeeesnnnnnaaeans
Figure 9-9 — Isochronous transmit cycle 10SS eXample ... eeeeem e e
Figure 9-10 — 1S0chronous tranSmit FOFMAL oo e e et
Figure 10-1 — INPUT_MORE/INPUT_LAST descriptor fOrmatcoooiiiiiiiiiiiii e
Figure 10-2 — DUALBUFFER descriptor format
Figure 10-3 — IR Buffer Fill MOAE e

Figure 10-4 — packet-per-buffer reCeive MOAEoooiiiiiiiii e e e e e e e e aeeean s
Figure 10-5 — IR DUAI-BUFEr MOTEt a e e e e e e e eae e e ns
Figure 10-6 — CommandPtr register FOrMALoooiiiiii e e e e e e ee e es
Figure 10-7 — IR DMA ContextControl (set and clear) register format
Figure 10-8 — IR DMA ContextMatch register fOrMAat ... e c————— s
Figure 10-9 — IRMultiChanMaskHi (set and clear) regiSteroooi i e
Figure 10-10 — IRMultiChanMaskLo (set and clear) regiSter ... e eeeman e
Figure 10-11 — Receive isochronous format in bufferFill mode with header/trailercccccooviiiiiiiiiiiiiinnnne. 144
Figure 10-12 — Receive isochronous format in bufferFill mode without header/trailercccccooviiiiiiiiiinieees 145..

Figure 10-13 — Receive isochronous format in packet-per-buffer or dual-buffer mode with header/trailer
Figure 10-14 — Receive isochronous format in packet-per-buffer and dual-buffer mode without header/trailer

Figure 11-1 — Self ID BUffer POINTEI FEQISTEIot et er——— 12 e e benn s
Figure 11-2 — Self ID COUNt FEQISTEN ... ciiieieiiiei et e et e e e e ammans

Figure 11-3 — Self-ID receive fOrmMat ..o

Figure 13-1 — PostedWrite AddreSSHI FEQISTEI ... it e e e e e et e e e e eeeaeannns
Figure 13-2 — PoStedWrite AdAreSSLO FEOISTEIouuiii ettt ettt e e e e e eeeeeemem e s e e e eeeeees
Figure 13-3 — Posted WIte ErfOr QUEUEiiiiiiiiiiiiiiie e ettt e e e e e ettt e e e e e e e eeeeetabe e aaeaaaaeeaesann i eaeaeaeennne
Figure A-1 — PCI CONfiQUIAtiON SPACEcoiiiiiiiiiii it e ettt e e e et e eee bt e e e e e e aaaaeanaamamasn i aaeaeeeeenees
Figure A-2 — Pointers to OHCI Resources in PCI Configuration Space

Page xiv Copyright © 1996-2000 All rights reserved.

List of Figures 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Figure A-3 — PCI Function Power Management State Diagram

... 166

Figure D-1 — IT DMA DMA-SIdE FIOWCRNANTcooviiiiiiiiiiiiiiiii e 180
Figure D-2 — IT DMA Link-Side FIOWCRhAIT ...t ee e 183
Figure E-1 — DMA Cycle Matching CONTINUUMooiiiiiiiiiiiiiei e 185
Figure E-2 — IT DMA Controller counters and cycle matching l0giCcoooiiiiiiiiiiii e e 186

Figure E-3 — IT DIMA FIOWCRNAIT ...ttt 44111 187
Figure E-4 — Process IT Contexts FIOWCHAITccoooii e e e e e e e e e e e e e e ae e 188
Figure E-5 — SKip IT CoNteXtS FIOWCRAITttt e e e e e e e e e 189

Figure F-1 — GUID ROM data map
Figure F-2 — Mini-ROM format

Copyright © 1996-2000 All rights reserved. Page xv

List of Figures 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Page xvi Copyright © 1996-2000 All rights reserved.

List of Tables 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Listof Tables

Table 1-1 — DMA controller types @and CONTEXLSiiiiiieiiiieiiiii i s e e e ee et s e e e e e e ee ettt e s s e e e e s seeaeennmmmmmmeesss s eeeaees 4
Table 1-2 — Link generated aCKNOWIEAQESuiiiiiiiiiiii e e e e e e et r—— 1 1 e e 7
Table 2-1 — read/write register fleld aCCESS TAQS .. .civivriiiiiiii i e e e e e e e e emmmmmm——— e e e e e e aeee 12
Table 2-2 — Set and Clear register field aCCESS TAGSiioiiiiiiiiiiiiie e e e e s oo eenmm—m e e e e e eesneans 12
Table 2-3 — Register field FE@SEL VAIUESuuuiiiiiiiiiieie et e e e e e e e e e e e e e e e st s e e e e e e eeeannnnnan 13

Table 3-1 — ContextControl (set and clear) register desSCriptionccovoiiiiiiiiiieiiiie e eeeeeeeeeee e sss——— 1110 LT
Table 3-2 — Packet event codes

Table 3-3 — CommandPtr regiSter AESCIPLIONiii i i ee e e e e e e s e e e e e e e ee s enmnmmmm—aeessseeeeeeeennnns
Table 3-4 — CommandP1tr read VAlUESoooiiiiiiiiiiii e e
TADIE 3-5 —— DIMA SUMIMIATY ...eiiieeiiiities e e e e e e ettt s e s e e e te e eatte s e e e eeeeesta e s aaeeeeeeestsssn e e s mmmm—— 1111 1 neeeeeeesnenns
Table 4-1 — 1394 Open HCI register space map

Table 4-2 — Asynchronous DMA Context NUMDBEr aSSIGNMENTScocvivuiiiiii e e e e e e e e e e s 30
Table 4-3 — Register addresses (SHEEL L OF 4) ..uuuiiii i e e emmm—— e e e aeae 30
Table 5-1 — Version register fIRlUScooviiiiiii i e s e e e e ettt ee e e e e e e e ane e e e e e e e aearra e e s 35
Table 5-2 — GUID ROM regiSter fIEIAScoouuiiiiii it r e e e e e e s e e et e e ee b smmmmmmmmmmer e e e e e e aeeeennnns 36
Table 5-3 — ATRELNES regiSter fIElASoiiii i et e e e e e e e eeem s reaae e s tesnnaeeeeaeeeesnenns 37
Table 5-4 — Serial BUS REQISIEISuuuuiiiiiieeiie it it e et e e ettt e e e e e e ettt e e s e aee e e e e teeaan s eeeeeannannanseeesesnnnnnaaeaeeeeannns 38
Table 5-5 — CSR registers’ fields

Table 5-6 — Config ROM header regiSter fIEldSoiiiiii i e s com—— e anaes 40
Table 5-7 — BUS ID reQISEI fIEIASuuiiiiiiiieiiie e e e e e e s nmmmm—— e e e e et e st e e eeeeeeeenes

Table 5-8 — Bus options register fields

Table 5-9 — GlobalUniquelD regiSter fIEIASuuveiii i e e e e e mmm—— e 1 e e e e e e aeee
Table 5-10 — Configuration ROM mapping register fieldsouviiiiii i e
Table 5-11 — VendorID regiSter fIRIUScoiiiiiieiie e e e e e e e s S e e mmmm——— e e e e tanan e e e e e e
Table 5-12 — HCCONLrOl regiStEr fIEIAS ...v.vvveeii i e e e e e e e e e ettt e eneemmmmama s eeesesnnneaaeeaeeeenes
Table 5-13 — programPhyEnable and aPhyEnhanceEnable EXamplesccccooiviiiiiiiiiiiiineccee s e
Table 5-14 — LPS and INKENGDIE @SSEITIONuuuiiiiiiiiiiiiiiiiiiiiiiiiiieeietieeiee et eeeeeeeeeeeeeeeeee s s smmnasaaennamt e ee e eeeeeaeeeees
Table 5-15 — Bus Management CSR Initialization registers’ fieldscccooiiiiiiiiii e e
Table 5-16 — FairnessControl register fIRlAScooiiiiiiiiiii e e e e e e e mmmmmmmammmm———— e e e e e e e aene
Table 5-17 — LIinKControl register fIElaSuiiii i s e e e e e e eraee s e s e e e e eearre e aeae s
Table 5-18 — NOde ID regiSter fIEIUSevvuiiii it e e e e e e e et e e e e eeeammaa e eeeeestennnaneaaaeees
Table 5-19 — PHY control register fIElaSciii it s e e e e e e et mmmmmmmmmmm— e e e aeaeeaene
Table 5-20 — Isochronous cycle timer register fIeldSoiii i e e
Table 5-21 — AsynchronousRequestFilter register fIeldS ..o oo
Table 5-22 — PhysicalRequestFilter regiSter fIEldSoooeiiiiiiiiii e e e e e e r e e aeaaeans
Table 5-23 — Physical Upper Bound register fIeldSuuuiiiiiiiiiiiiiis e e e e e emmmmee e ee s
Table 6-1 — IntEvent register description (Sheet 1 0f 3) ..o e s
Table 6-2 — IntMask register dESCIHPLIONcoiiiiiiii e e e e e e e e e et e s e eeaeeeeeeeennassssa e eeeaeeeeannes
Table 7-1 — OUTPUT_MORE descriptor element summary . e reeeeeee et e eaeeeeeeette. s ——
Table 7-2 — OUTPUT_MORE-Immediate descriptor eIement summary ... 71....
Table 7-3 — OUTPUT _LAST descriptor €lemMent SUMMATYciiieeeeiiiiiiiiie i e eeeeesiiss s e e e eeseeaesnnnnnaeseeeeeeennennnes
Table 7-4 — OUTPUT_LAST-Immediate descriptor element SUMMArYcccoovveeieerieeiiiiiiniiieeeeeeeeienns
Table 7-5 — Z Value ENCOINGoeiiiiiiiii et e e e e et e e e e e et et e e te e s e e e s smmmemmemmmmmm e e e s eessesnnnaaeeeeeeennes
Table 7-6 — timeStamMP AESCHPLIONuiiii i e e e e s e e e e e e e e e te s e s s— e et e e aesnnn s
Table 7-7 — Results of timeStamp.cycleSeconds - cycleTimer.cycleSeconds

Table 7-8 — timeStamp.cycleCount-cycleTime.cycleCount Example 1ccoovvmiiiiiiiiiiiiiiiciiciee e
Table 7-9 — timeStamp.cycleCount-cycleTime.cycleCount EXample 2ccooviiiiiiiiiii e e
Table 7-10 — timeStamp.cycleCount-cycleTime.cycleCount EXample 3ooovviiiiiiiiii i eeememmeeees 79
Table 7-11 — ContextControl (set and clear) register deSCHPLIONvuviiiiii i rm———— e 81
Table 7-12 — Quadlet read request transmit fIeldScooviiiiiiiii e cmmm— o2 O
Table 7-13 — Quadlet transmit fIEIAS coiiiiii i e e e et e ere e e e e e ee et e e et aeeraaas 86
Table 7-14 — BIOCK tranSMIL fIEIASuuiiiiiiiiiiiiiiiiiii ettt s 11211 e e e n e a e es 88

Copyright © 1996-2000 All rights reserved. Page xvii

List of Tables 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 7-15 — Write response transmit fIEldSiiiiii i e e e s e e e nnnmnm e e e e e e e e aeranas 90
Table 7-16 — Quadlet transmit fIRIAS iiiiiie et e et e e e nenm e e e e e aaa e aeeras 91
Table 7-17 — Block transmit fields
Table 7-18 — Asynchronous stream packet fIeldSooovuiiiiiiiiii e e——— e
Table 8-1 — INPUT_MORE descriptor €l€mMeNnt SUMMAIYciiiieieiriieiiiiiieseeeeeeeeiiisiseeeeeeeesaesnnnanaeeeeseeeseeesnsnnnnns
Table 8-2 — AR ContextControl (set and clear) register deSCrPiONccoviviiiiiiii e e mmm————
Table 8-3 — AR DMA trailer fIElUS ..ot e eeeennneme e e
Table 8-4 — AR Request Context Bus Reset packet deSCriptioncccoovieeiiiiiiiiiii e s e e e e e e nnae s
Table 8-5 — ASYNCH rE€CEIVE fIEIAS ...ciiiieiiiiii i e e e e e e et ettt raa e e e aeeeeeea st e e eeeaeeeanes
Table 9-1 — OUTPUT_MORE descriptor element SUMMAIYcccoivuuiiiiiiiieeeieeieieiiiiseeseeeseeassrnn s e e e e s mmmmmenmmnnn
Table 9-2 — OUTPUT_MORE-Immediate descriptor element SUMMAIYccovvvviiiiiiiiieeeieeiiiiiiin e eeeeeeeeesieeees
Table 9-3 — OUTPUT _LAST descriptor €lement SUMMATYcccoouuuuiiiiiereireieiiiasseeeeeeeeiinnn s eeeaeseeasanannnaeeeeees
Table 9-4 — OUTPUT_LAST-Immediate descriptor element SUMMAIYc.uuuiiiiieieieiereiiiiense e e eeeeeeeeeen e s
Table 9-5 — STORE_VALUE descriptor element SUMMAIYcouuuiiiiiieeiireiiiie s is e e e e eeeteainns e s e e e eeeessiinn e eeeeeeeees
Table 9-6 — Z VAU @NCOUINGottt e e e e e et e e ettt e e mmemmmmms s 22 e e e e e eeenbn e e e eaeas
Table 9-7 — IT DMA ContextControl (set and clear) register descriptionccccceeeeeen.

Table 9-8 — Isochronous transmit fields ..o

Table 10-1 — INPUT_MORE/INPUT_LAST descriptor element summary
Table 10-2 — DUALBUFFER descriptor element SUMMATIYcoooiiiiiiiiiiiiiai e
Table 10-3 — Z VAIUE ENCOUINGoeeiiiiii et e ettt et e e e e e e ee e bt et s+« eo————— 11122t eee bbb s
Table 10-4 — IR DMA ContextControl (set and clear) register descriptiono.oiiiiiiiiiiiiiiii e 138
Table 10-5 — IR DMA ContextMatch register deSCripLioNooouiiiiii e e e e 140
Table 10-6 — ISOChronous receive fIEIAS ... e i e e e e e e e e e e e e e e eeeaeaanns 143
Table 11-1 — Self ID BUffer POINTET FEQISTEE ...ttt e e s s s sesnesrees 147
Table 11-2 — Self ID Count register
Table 11-3 — Self-1D receive fields
Table 13-1 — PostedWriteAddress register deSCHPLION i e ee e 156
Table A-1 — COMMAND REQISIEI ... ittt oo e et et et e e e e e e e eeetttna e aeeaaenmann e eeeeeeennnnnnnes
TADIE A-2 — STATUS REGISIEI ...ttt ettt oot e e ettt ettt e e e e e e e e eeeaetat mmmmmmmmmmmna e eeesesnnneaeeeaeeennes
Table A-3 — CLASS CODE REQISIENeutuuiiieiii ettt e e e e ettt e e e e e e et eettba s e e e aeeaeeaaemamannan e aaaaaaeeene
Table A-4 — BasS@ AUl _0 REGISIEI ...t e e e ettt et o2 e e ettt e & t— £ 111
TabIe A-5 — CAP_PTR REOISTEI ...ttt ettt e ettt ettt e e e e e e e e et e te s rmmmmeaaaaeeseeeeeeesnbnnn e aaeas
Table A-6 — PCI_HCI_CONrol REQISIEL ittt e e e e e e e e e et e enmmn 222 e e e e e enenn s
Table A-7 — Capability ID REQISTEIuuiiii e oot e e e e e e e et ettt e s e e aea e e s e e e e e e eesabann e e aaeas
Table A-8 — Next Item POINIEr REQISTEI ... ettt e e e e e e e ettt e e e e e e aeeeananaa e eeeaaas
Table A-9 — PMGC REQISIEI ...t et e e e e ee et e e e e e e e e e e eeeaaaaeas

Table A-10 — PM Control/Status Register
Table A-11 — Open HCI POWET Stat@ SUMIMAIYcoooiiiiiiiiiiii e ee ettt e e e ettt e e e e e e e e e ee e et e s 5 e 167
Table B-1 — ReQISter RESET SUMIMAIYuuuiiieeiiiieiii ettt e e e et ettt e e e e e e e e ae ittt e s—— 1 112222 ee e 171

Page xviii Copyright © 1996-2000 All rights reserved.

Introduction 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

1. Introduction

1.1 Related documents

The following documents may be useful in understanding the terms and concepts used in this specification. The docu
ments are for general background purposes only and are not incorporated into and do not form a part of this specificatior

[A] |EEE 1394-1995 High Performance Serial Bus
IEEE, 1995

[B] ISO/IEC 13213:1994 Control and Status Register Architecture for Microcomputer Busses
International Standards Organization, 1994

[C] IEEE 1394a2000
IEEE Standard for a High Performance Serial bus (Supplement)

All references to 1394 in this document refer to IEEE 1394-1995 ([A] above) unless otherwise specified.
Following IEEE conventions, the term “quadlet” is used throughout this document to specify a 32-bit word.

1.2 Overview

The 1394 Open Host Controller Interfac@pen HCI) is an implementation of the link layer protocol of the 1394 Serial
Bus, with additional features to support the transaction and bus management layers. The 1394 Open HCI also include
DMA engines for high-performance data transfer and a host bus interface.

IEEE 1394 (and the 1394 Open HCI) supports two types of data transfer: asynchronous and isochronous. Asynchronou
data transfer puts the emphasis on guaranteed delivery of data, with less emphasis on guaranteed timing. Isochronous d
transfer is the opposite, with the emphasis on the guaranteed timing of the data, and less emphasis on delivery.

1.2.1 Asynchronous functions

The 1394 Open HCI can transmit and receive all of the defined 1394 packet formats. Packets to be transmitted are ree
out of host memory and received packets are written into host memory, both using DMA. The 1394 Open HCI can alsc
be programmed to act as a bus bridge between host bus and 1394 by directly executing 1394 read and write requests
reads and writes to host bus memory space.

1.2.2 Isochronous functions

The 1394 Open HCI is capable of performing the cycle master function as defined by 1394. This means it contains a cycl
timer and counter, and can queue the transmission of a special packet called a “cycle start” after every rising edge of th
8 kHz cycle clock. The 1394 Open HCI can generate the cycle clock internally (required) or use an external reference
(optional). When not the cycle master, the 1394 Open HCI keeps its internal cycle timer synchronized with the cycle
master node by correcting its own cycle timer with the reload value from the cycle start packet.

Conceptually, the 1394 Open HCI supports one DMA controller each for isochronous transmit and isochronous receive.
Each DMA controller may be implemented to support up to 32 different DMA channels, referredMAasontexts
within this document.

The isochronous transmit DMA controller can transmit from each context during each cycle. Each context can transmit
data for a single isochronous channel.

Copyright © 1996-2000 All rights reserved. Page 1

Introduction 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

The isochronous receive DMA controller can receive data for each context during each cycle. Each context can be config-
ured to receive data from a single isochronous channel. Additionally, one context can be configured to receive data from
multiple isochronous channels.

1.2.3 Miscellaneous functions

Upon detecting a bus reset, the 1394 Open HCI automatically flushes all packets queued for asynchronous transmission.
Asynchronous packet reception continues without interruption, and a token appears in the received request packet stream
to indicate the occurrence of the bus reset. When the PHY provides the new local node ID, the 1394 Open HCI loads this
value into its Node ID register. Asynchronous packet transmit will not resume until directed to by software. Because
target node ID values may have changed during the bus reset, software will not generally be able to re-issue old asynchro-
nous requests until software has determined the new target node IDs.

Isochronous transmit and receive functions are not halted by a bus reset; instead they restart as soon as the bus initializa-
tion process is complete.

A number of management functions are also implemented by the 1394 Open HCI:

a) A global unigue ID register of 64 bits which can only be written once. For full compliance with higher level
standards, this register shall be written before the boot block is read. To make this implementation simpler, the
1394 Open HCI optionally has an interface to an external hardware global unique ID (GUID, also known as the
IEEE EUI-64).

b) Four registers that implement the compare-swap operation needed for isochronous resource management.

Page 2 Copyright © 1996-2000 All rights reserved.

Introduction 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

1.3 Hardware description

Figure 1-1 provides a conceptual block diagram of the 1394 Open HCI, and its connections in the host system. The 139
Open HCI attaches to the host via the host bus. The host bus is assumed to be at least 32 bits wide with adequate perf
mance to support the data rate of the particular implementation (100Mbit/sec or higher plus overhead for DMA structures)
as well as bounded latency so that the FIFO’s can have a reasonable size.

T 5 T
 EEEE—— — —
DMA é FIFO
S
AT Request AT Request
 EEEE—— W
DMA [™ Al FIFO —
AT Response > AT Response
> W
DMA _>é FIFO [™
‘ Physical Re- S| AT Physical
. W ysica
o ; sponse Unit 3 AResponse FIFO -
(@]
T —~ -
% 5 mtt_artnal ¢ x>
host bus | @ registers = E 1394 bus
-+ , € 4 Phys Read | o | Physical Read 3 o >
=) Request Rcv Request FIFO < m &
@a = Phys Write \w| Physical Write
o —
I Request Rcv é Request FIFO <
S
Gen Request w| AR Request
- . -
. Receive DMA Al FFO [
Serial P
ROM (OpY Gen Response g VSV AR Response
< Receive DMA é FIFO <
Parallel
Rt IR » IR
ROM (Opt ¢ W
(OrY < | DMA A FIFO]
S ,
Self-ID \wiSelf-ID Receive
———— . - <—
Receive DMA é FIFO

Figure 1-1 — 1394 Open HCI conceptual block diagram
1.3.1 Host bus interface

This block acts both as a master and a slave on the host bus. As a slave, it decodes and responds to register access wi
the 1394 Open HCI. As a master, it acts on behalf of the 1394 Open HCI DMA units to generate transactions on the hos
bus. These transactions are used to move streams of data between system memory and the devices, as well as to read
write the DMA command lists.

Copyright © 1996-2000 All rights reserved. Page 3

Introduction 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

1.3.2 DMA

The 1394 Open HCI supports seven types of DMA. Each type of DMA has reserved register space and can support at
least one distinct logical data stream referred to B&MA context

Table 1-1 — DMA controller types and contexts

DMA controller type number of contexts
Asynchronous Transmit 1 Request, 1 Response
Asynchronous Receive 1 Request, 1 Responge
Isochronous Transmit 4 minimum, 32 maximym
Isochronous Receive 4 minimum, 32 maximpm
Self-ID Receive 1
Physical Receive & 0 (not programmable lik
Physical Response those above) T

Each asynchronous and isochronous context is comprised of a buffer descriptor list EAl&dcantext programstored

in main memory. Buffers are specified within the DMA context progranDblA descriptors Although there are some
differences from controller to controller as to how the DMA descriptors are used, all DMA descriptors use the same basic
format. The DMA controller sequences through its DMA context program(s) to find the necessary data buffers. The mech-
anism for sequencing through DMA contexts differs somewhat from one controller to the next and is described in detail
for each type of DMA in its respective chapter.

The Self-ID receive controller does not utilize a DMA context program and consists instead of a pair of registers; one to
be configured by software, and one to be maintained by hardware.

The 1394 Open HCI also has a physical request DMA controller that processes incoming requests that read directly from
host memory. This controller does not have a DMA context, it is instead controlled by dedicated registers.

1.3.2.1 Asynchronous transmit DMA

Asynchronous transmit DMA (AT DMA) utilizes three data streams, one each for AT DMA request, AT DMA response,
and the Physical Response Unit. These three functions can share resources.

AT DMA request and AT DMA response move transmit packets from buffers in memory to the corresponding FIFO
(request transmit FIFO or response transmit FIFO). For each packet sent, it waits for the acknowledge to be returned. If
the acknowledge ibusy the DMA context will resend the packet up to a software-configurable number of times for
single-phase retry, or up to a software-configurable time limit for dual-phase retry. If out-of-order AT is implemented, the
Host Controller can make forward progress in the context program attempting packets beyond one acknowledged with
busy.The busied packets are retried according to a configurable retry limit, but not necessarily back-to-back.

When the receive DMA indicates that a physical read has been received, the Physical Response Unit takes over to send
the response packet. The Physical Response Unit can only interrupt the AT DMA response controller or AT DMA request
controller between packets.

The asynchronous transmit DMA supports either the single-phase retry protocol (retry_X) or the dual-phase retry protocol
(retry_1/retry_Alretry B). See P1394a for more information on the dual-phase retry protocol.

Page 4 Copyright © 1996-2000 All rights reserved.

Introduction 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

1.3.2.2 Asynchronous receive DMA

The asynchronous receive DMA (AR DMA), contains two DMA controllers: the Physical Request Unit and the AR DMA
controller.

The Physical Request Unit takes control when a request with a physical address is received. There are three types
physical addresses: host memory addresses (corresponding to the 4Gbyte address of a typical 32-bit CPU), compare-sw
management addresses, and the bus_info_block.

The AR DMA controller handles all incoming asynchronous packets not handled by the other functions in the AR DMA.

It consists of two contexts, one for asynchronous response packets, and one for asynchronous request packets. Ea
packet is copied into the buffers described by the corresponding DMA context program. Note that received lock request:
not targeted to one of the four compare-swap management registers are always handled by the AR DMA request contex

It is recommended that Open HCI asynchronous receive support dual-phase retry.
1.3.2.3 Isochronous transmit DMA

The isochronous transmit DMA controller supports a minimum of four isochronous transmit DMA contexts and may be
implemented to support up to 32 isochronous transmit DMA contexts. Each context is used to transmit data for a single
isochronous channel. Data can be transmitted from each IT DMA context during each isochronous cycle.

1.3.2.4 lIsochronous receive DMA

The isochronous receive DMA controller supports a minimum of four isochronous receive DMA contexts and may be

implemented to support up to 32 isochronous receive DMA contexts. All but one IR DMA context is used to receive

packets from a single isochronous stream (channel). One context, as selected by software, can be used to receive pack
from multiple isochronous streams (channels).

Isochronous packets in the receive FIFO are processed by the context configured to receive their respective isochronol
channel numbers. Each DMA context can be configured to strip packet headers or include the headers and trailers whe
moving the packets into the buffers. In addition, each DMA context can be configured to receive exactly one packet per
buffer (packet-per-buffer), concatenate packets into a stream that completely fills each of a series of buffers (buffer-fill),
or concatenate a first portion of payload of each packet into one series of buffers and a second portion of payload int
another separate series of buffers (dual-buffer mode).

1.3.2.5 Self-ID receive DMA

Self-ID packets (received during the bus initialization self-ID phase) are automatically routed to a single designated host
memory buffer by 1394 Open HCI self-ID receive DMA. Each time bus initialization occurs, the new self-ID packets will
be written into the self-ID buffer from the beginning of the buffer, thereby overwriting the old self-ID packets.

1.3.3 Global unique ID (GUID) interface

The optional GUID (EUI-64) interface is intended to interface to an external ROM device from which the 1394 64-bit
"node_unique_ID" may be loaded. If this interface is provided and an external device is present, the GUID_ROM bit in
the Version Register is set and the GUID shall be automatically written from the external ROM device following a
hardware reset. This interface is required for Host Controllers that are intended to be used on add-in cards. The specific
of the interface to the external ROM device are outside the scope of this specification.

Annex F., “Extended Config ROM Entries,” specifies a format of the GUID ROM, if implemented, to provide vendor
specific configuration ROM information and extended entries through the GUID ROM interface.

Copyright © 1996-2000 All rights reserved. Page 5

Introduction 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

1.3.4 FIFOs

Data quadlets entering or leaving the FIFOs are conditionally byte-swapped. The 1394 Open HCI is designed to run in
both little-endian environments (x86/PCIl) and byte-swapped big-endian environments (PowerMac/PCl). Note, however,
that the 1394 standard specifies that data is treated as big-endian, with the most significant byte of a doublet, quadlet, or
octlet transmitted first. This means that the data coming through the FIFOs may be byte swapped if it is intended for a
byte-swapped little-endian PCI like the PowerMac (two byte-swap operations leaves the data in the original big-endian
1394 format). Little-endian x86 systems may or may not want the data byte swapped, so there is an Open HCI control flag
to enable byte swapping for 1394 packet data.

1.3.4.1 Asynchronous transmit FIFOs

The asynchronous transmit FIFOs are temporary storage for non-isochronous packets that will be sent from the Host
Controller to devices on 1394. The asynchronous request FIFO is loaded by the asynchronous request DMA unit, the
asynchronous response FIFO is loaded by the asynchronous response DMA unit and the physical response FIFO is loaded
by the physical DMA response unit.

It is not required that these FIFOs be implemented as separate physical entities. A single FIFO may be used for all asyn-
chronous transmit packets as long as the implementation prevents pending asynchronous requests and asynchronous
responses from blocking each other. For example, if a read request is being sent to a 1394 device that is returning
ack_busy, this shall not prevent responses from either the physical DMA unit or the asynchronous response unit from
being sent. Furthermore, a busied response from the asynchronous response unit shall not block responses from the
physical DMA unit. Other sections of this specification will provide implementation guidelines that will help ensure that

the non-blocking requirements can be met with a single asynchronous transmit FIFO.

1.3.4.2 Isochronous transmit FIFO

The isochronous transmit FIFO is temporary storage for the isochronous transmit data. It is filled by the ITDMA and is
emptied by the transmitter.

1.3.4.3 Receive FIFOs

Conceptually there are several receive FIFOs for handling incoming asynchronous requests, asynchronous responses,
isochronous packets and self-ID packets. The FIFOs are used as a staging area for packets which will be routed to the
appropriate handler. There is no requirement on the number of hardware FIFOs that shall be implemented to provide the
required functionality set forth in this document. However, any specific FIFO implementation shall ensure that physical
requests, asynchronous requests, asynchronous responses, isochronous packets, and self-ID receive contexts proceed
independently and do not block each other.

For example, if a unified receive FIFO is used and the transaction layer request queue is busy or stopped, all other
received packet types (physical requests, asynchronous responses, isochronous packets, and self-ID packets) shall still
pass through the FIFO and be delivered to the transaction layer or host bus interface. Other sections of this specification
will provide implementation guidelines that will help ensure that the non-blocking requirements can be met with a single
receive FIFO.

1.3.5 Link

The link module sends packets which appear at the transmit FIFO interfaces, and places correctly addressed packets into
the receive FIFO. It includes the following features.

e Transmits and receives correctly formatted 1394 serial bus packets.

» Generates the appropriate acknowledge for all received asynchronous packets, including support for both the single
and dual phase retry protocol for received packets.

Page 6 Copyright © 1996-2000 All rights reserved.

Introduction 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

» Performs the function of cycle master.
» Generates and checks 32-bit CRC.

» Detects missing cycle start packets.

« Interfaces to 1394 PHY registers.

* Receives isochronous packets at all times (does not ignore isochronous packets received outside of the expected p
riod between cycle start and a subaction gap). This supports asynchronous streams and allows isochronous data to
received even if there is a CRC error in a received cycle start.

» Ignores asynchronous packets received during the isochronous phase (such packets are not ack’ed and isochrong
phase continues).

The acknowledges generated by the link depend on the type of received packet, the address and the state of the Open F
FIFOs:

Table 1-2 — Link generated acknowledges

Acknowledge Condition
ack_complete A packet with good CRC in both the header and data block (if there is one) and which @lso falls
into one of the following classifications:

a) Any response that is accepted from 1394.

b) A write request with the offset address between 48’mfid the configurabl
(optional) PhysicalUpperBound-1 or 48'0000_FFFF_FFFF whemsfed writesare
enabled, ii) the request will be handled as a physical request, and iii) the number of
outstanding posted writes is within the implementation specific limit.

c) A write request with the offset address between either the configurable (optional)
PhysicalUpperBound or 48’h0001_0000_0000, and 48'hFFFE_FFFF_FFFF that can
be fully copied into the host memory receive buffer.

)

NOTE: For further information on implementation requirements for posted writes, see Section 3.3.3.
ack_pending A packet with good CRC in both the header and data block (if there is one) and which glso falls
into one of the following classifications:
a) Any read request that can be fully loaded into the receive buffer.
b) Any lock request that can be fully loaded into the receive buffer.
c) Any block request with a non-zero extended tcode.
d) A write request with the offset address between 48hFFFF_0000_0000 and
48'hFFFF_FFFF_FFFF (the top 4GB, which includes the register space) that|can be
fully loaded into the receive buffer.

ack busy X, Any received packet with a good CRC in both the header and data block (if there is one) that
ack busy A, cannot be fully loaded into the receive buffer. This acknowledge is also sent when a packet is
ack busy B received with a valid header CRC and either a invalid data CRC or a data length err. Th¢ choice

of _X, _A, or _B depends on the choice of acknowledge algorithm and the particular “rt'1value
of the received packet.

ack data_error Open HCI's compliant with Release 1.1 shall not send ack_data_error (see section EF.4.2.2).

ack_type_error For a block write request with a good CRC in both the header and data block, this efror ack:

« May be returned when the data_length is larger than the size indicated in the max_rec

field of the Bus_Info_Block of the Host Controller.

< Shall be returned if data_length is larger than maxaretthe request is not handlgd

by the physical response unit.

For a block read request with a good CRC in the header, this error ack may be returng¢d when
the data length is larger than the size indicated in the max_rec field of the Bus_Info_BJock of

the Host Controller and the request is handled by the physical response unit.

1 Numeric notation description is given in section 2.1.2

Copyright © 1996-2000 All rights reserved. Page 7

Introduction 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

1.4 Software interface overview
There are three basic means by which software communicates with the 1394 Open HCI: registers, DMA, and interrupts.
1.4.1 Registers

The host architecture (PCI, for example) is responsible for mapping the 1394 Open HCI's registers into a portion of the
host’s address space.

In the normal operation of some systems, the SCLK clock signal from the PHY may not be present. The Host Controller
may be unable to service requests to certain registers without the SCLK signal. If a register access fails because the SCLK
signal is not present, the Host Controller will set IntEvegccessFaito communicate this error. When a register access

fails the Host Controller shall not signal a host bus error. Failed read operations return undefined values, and failed write
operations shall have no effects.

1.4.2 DMA operation
DMA transfers in the 1394 Open HCI are accomplished through one of two methods:

a) DMA. Memory resident data structures are used to describe lists of data buffers. The 1394 Open HCI
automatically sequences through this buffer descriptor list. This data structure also contains status information
regarding the transfers. Upon completion of each data transfer, the DMA controller conditionally updates the
corresponding DMA Context Command and conditionally interrupts the processor so it can observe the status of
the transaction. A set of registers within the 1394 Open HCI is used to initialize each DMA context and to
perform control actions such as starting the transfer.

b) Physical response DMA. The 1394 Open HCI can be programmed to accept 1394 read and write transactions as
reads and writes to host memory space. In this mode, the 1394 Open HCI acts as a bus bridge from 1394 into host
memory.

The formats for the data sent and received in all these modes are specified in the applicable chapters.
1.4.3 Interrupts

When any DMA transfer completes (or aborts) an interrupt can be sent to the host system. In addition to the interrupt

sources which correspond to each DMA context completion, there is also a set of interrupts which correspond to other

1394 Open HCI functions/units. For example, one of these interrupts could be sent when a selflID packet stream has been
received.

The processor interrupt line is controlled by the IntEvent and IntMask registers. The IntEvent register indicates which
interrupt events have occurred, and the IntMask register is used to enable selected interrupts. Software writes to the
IntEventClear register to clear interrupt conditions in IntEvent.

In addition, there are registers used by the isochronous transmit and isochronous receive controllers to indicate interrupt
conditions for each context.

Page 8 Copyright © 1996-2000 All rights reserved.

Introduction 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

1.5 1394 Open HCI Node Offset (Address) Map

Open HCI divides the 48-bit node offset space as depicted below:

48'hFFFF_FFFF_FFFF

48'hFFFF_F000_0000
48'hFFFF_EFFF_FFFF

CSR Space } some Physical

Upper Address Space
48’hFFFF_0000_0000
48’'hFFFE_FFFF_FFFF

Middle Address Space

physicalUpperBound
physicalUpperBound -1 '1.

Low Address Space Physical Range
48’h0000_0000_0000 -J

Figure 1-2 — Node Offset Map

Low Address Spaces from 48’h0 up to physicalUpperBound. Asynchronous read and write requests into this range can
be handled by the Physical Request/Physical Response units, providing an efficient mechanism for moving asynchronou
data. Whether or not a request can be handled in this manner depends on a set of criteria as described in section 12. |
write requests which are handled by the Physical Request unit, the Host Controller may issue an ack_complete
immediately, even before the data has been written to host memory, to maximize packet transaction efficiency (this is
referred to as &osted Writg Or, depending on circumstances, the Host Controller may instead issue an ack_pending for
such requests.

The physicalUpperBound is an optional register that some Host Controllers may implement which provides a means tc
change the upper bound of the low address space. If not implemented, the Host Controller shall use a default physic:
upper bound of 48'’h0001_0000_0000, which provides a physical range of 4GB. If implemented, systems use the
physicalUpperBound register to increase the size of the Physical Range.

Middle Address Spaceis from physicalUpperBound through 48'hFFFE_FFFF_FFFF. Packets with destination offsets
within this range are not candidates for handling by the Physical Request/Response units, and are instead passed
software for processing. Although there will be added latency while software performs processing, the Host Controller
nevertheless issues an ack_complete for all write requests within this range which normally require an ack (e.g., broadca
write requests are never ack’ed). This is to maximize packet transaction efficiency. However, although the node that issue
the write request is informed (via the ack_complete) that the write succeeded, it is possible that an error occurred and th:
the write did not in fact reach its destination. This address range is best suited to protocols such as TCP/IP for exampl
which have their own mechanisms for detecting and recovering from lost packets.

Copyright © 1996-2000 All rights reserved. Page 9

Introduction 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Upper Address Spacds from 48’hFFFF_0000_0000 to 48'hFFFF_EFFF_FFFF. Packets with destination offsets within

this range are not candidates for handling by the Physical Request/Response units, and are instead passed to software for
processing. The Host Controller shall respond to write requests to this range with an ack _pending, and software should
issue a write response with resp_complete only after the data has been written to its specified destination. This range is
best suited to protocols that do not tolerate lost packets.

CSR Spaceis from 48'hFFFF_F000_0000 to 48'FFFF_FFFF_FFFF providing a range of 256MB. This range is the
reserved register space as specified in ISO/IEC 13213:1994. Most packets with destination offsets within this range are
not candidates for handling by the Physical Request/Response units, and are instead passed to software for processing.
Some however are handled directly by the Host Controller without involving software and are listed in section 12.

1.6 System Requirements

This Host Controller specification is intended to be largely independent of the type of system to which it is attached. The
intent is that Host Controller designs that follow this specification may be built for many different types of systems and
still adhere to the same programming model. The required system facilities are:

a) Host Controller shall be able to initiate accesses of host system memory,
b) Host Controller shall be able to modify system memory with byte granularity,
c) Host Controller shall be able to signal an exception/interrupt to the host CPU,

d) access of 32-bit entities in either system memory or on the Host Controller shall be endian neutral and atomic. No
8-bit or 16-bit access to Host Controller registers are supported.

The 1394 Open HCI does not preclude a system from having multiple 1394 Open HCI controllers.

1.7 Alignment

1.7.1 Data alignment
The 1394 Open HCI shall perform these two alignment functions:

a) Translate between the byte alignments of the host-based data and the quadlet aligned FIFO. For instance, if a 5
byte 1394 data packet is to be stored at host bus address 6, then the first two bytes of the first data quadlet in the
FIFO shall be stored at host bus address 6 and 7 using a single quadlet write, then the next two bytes of the first
quadlet in the FIFO combined with the first byte of the next quadlet in the FIFO are written to host bus address 8,
9, and 10.

b) Stuff extra zero bytes into the transmit FIFO when the number of bytes to transmit is not an integral number of
quadlets.

1.7.2 Memory structure and buffer alignment

Alignment requirements for host memory data structures and host memory buffers can be found in sections of this
document where those elements are described.

Page 10 Copyright © 1996-2000 All rights reserved.

Conventions - Notation and Terms1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

2. Conventions - Notation and Terms

2.1 Notation

2.1.1 Conformance glossary

Several keywords are used to differentiate between different levels of requirements and optionality, as defined below
These key words shall take the following definitions for normative sections of this specifications.

expected A keyword used to describe the behavior of the hardware or software in the design models assumed by this
standard. Other hardware and software design models may also be implemented.

ignored: A keyword that describes bits, bytes, quadlets, octlets or fields whose values are not checked by the recipient.
may: A keyword that indicates flexibility of choice with no implied preference.

shall: A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory require-
ments to ensure interoperability with other products conforming to this standard.

should: A keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to the phrase “is

recommended.”

undefined: A keyword that defines the condition of a bit which software shall take no action on (whether it be zero or
one). If software requires a specific action for the bit definition, then software shall initialize the bit.

2.1.2 Numeric Notation

Unless otherwise specified, numbers will be represented in Verilog language style. In particular, numbers with a “h”

prefix are hexadecimal, “’b” are binary, and “d” or those without a prefix are decimal. If a number precedes the ,
then it indicates the length of the number in bits. For example, 4’h8 is the binary number 'b1000.

2.1.3 Bit Notation

So that the size and location of fields can be better understood, the bits within quadlet registers are labeled, where bit 3
corresponds to the most-significant bit and bit O corresponds to the least-significant bit. They do not correspond to the
transmission order on the 1394 bus.

All registers and data structures in this document have the most significant bit (msb - bit 31) shown on the far left.

2.1.4 Register Notation

There are two types of registers described in this document; read/write registers and set and clear registers. The notati
used for each is described below, as well as notation used for register reset values and reserved fields and registers.

Copyright © 1996-2000 All rights reserved. Page 11

Conventions - Notation and Terms1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

2.1.4.1 Read/Write registers

Read/write registers are registers for which a single address is defined and for which fields may be defined with one or
more of the following attributes:

Table 2-1 — read/write register field access tags

access tag

(rwu) name meaning

r read field may be read

w write field may be written from the host bus

u update field may be autonomously updated by Open HCI hardwarqz

2.1.4.2 Setand Clear registers

Throughout this document there are Host Controller registers that are identied aisd Clearegisters. These registers
have the property of having two addresses by which they may be referenced by the host. Unless otherwise stated in the

description of the register, a host read of either address will return the current contents of the register. Host writes,
however, have different effects when addressing the different addresses.

When the host writes to theetaddress the value written is taken as a bit mask indicating which bits in the underlying
register are to be set to one. A one bit in the value written indicates that the corresponding bit in the register is to be set
to one, while a zero bit in the value written indicates that the corresponding bit in the register is not to be changed. Simi-
larly, host writes to th€lear address specify a value that is a bit mask of bits to clear to zero in the underlying register,

a one bit means to clear the corresponding bit while a zero bit means to leave the corresponding bit unchanged. It is
intended that writing zero bits to these addresses has no effect on the corresponding bits in the underlying register,
including transient effects that could affect the operation of the Host Controller.

There are several reasons to use this type of register:

» The host doesn't need to do both a read and a write to affect only a single bit.

* The host doesn’t risk the Host Controller modifying a bit while the host does a read-modify-write operation, thus
causing unintended effects.

* The host doesn’t have to serialize its access to frequently used registers in order to ensure that conflict with another
process doesn’t cause unintended effects.

For set and clear registers that have an undefined value following a reset, it is recommended that software write all ones
to the Clear address to ensure the register has a known value.

Table 2-2 — Set and Clear register field access tags

access tag

(rscu) name meaning

r read field may be read

s set field may be set from the host bus

c clear field may be cleared from the host bus

u update field may be autonomously updated by Open HCI hardwarqz

Page 12 Copyright © 1996-2000 All rights reserved.

Conventions - Notation and Terms1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

2.1.4.3 Register Reset Values

Register field descriptions may be tagged with one or more of the following reset values. This column indicates the value o
the field immediately following a soft reset or hardware reset. Except where otherwise noted, the results from a soft reset an
hardware reset are the same. Note that the reset column is for software and hardware resets only and does not include |
reset values (those are discussed as needed in the applicable text).

Table 2-3 — Register field reset values

reset value meaning

x'by or x’hy | Indicates the value (in binary or hexadecimal) of the field upjon
completion of a reset. For description of Verilog notation see
section 2.1.2.

undef Following a reset, the value of this field is undefined and may
contain (any combination of) zero(s) or one(s). Software shall
initialize bits that reset to “undef” before it uses them.

N/A Not applicable. A reset does not have any effect on this field.

Unless otherwise specified, all fields will remain unchanged after a 1394 bus reset.
2.1.4.4 Reserved fields

All reserved fields (indicated by a hatched or grayed-out pattern) are read as zeros, shall be ignored by software, and sh:
be written as zeros.

2.1.4.5 Reserved registers

Addresses within the host bus Open HCI Register Address space that are marked as reserved shall return zeros when re
and shall ignore the write data value.

2.1.4.6 Register field notation

In descriptions which refer to specific register fields, the notation Rifrwill be used where Rrrrr refers to the register
name andffff refers to the referenced field within that register.

Copyright © 1996-2000 All rights reserved. Page 13

Conventions - Notation and Terms1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

2.2 Terms

The following terms and acronyms are used throughout this document.

ack_busy* Any of the “busy” acknowledgments: ack_busy X, ack _busy A, ack busy B.
AR DMA A synchronouRkeceiveDMA .
AR DMA Request Refers to the asynchronous receive DMA context that handles all incoming request packets not

handled by th@hysical request unit
AR DMA Response Refers to the asynchronous receive DMA context that handles all incoming response packets.

asynchronous stream A stream packet for which only a channel has been reserved at the isochronous resource manager.
packet An asynchronous stream packet shall be transmitted during the asynchronous period and not
during the isochronous period. For the same channel number, there is no restriction on multiple
talkers nor upon a single talker sending multiple asynchronous stream packets. Fair arbitration
rules govern the transmission of these packets. Seésatdwonous stream packabdstream
packet

AT DMA A synchronoudransmitbMA .

AT DMA Request Unit Refers to the asynchronous transmit DMA subunit which moves transmit packets from buffers in
memory to the request transmit FIFO.

AT DMA Response Unit Refers to the asynchronous transmit DMA subunit which moves transmit packets from buffers in
memory to the response transmit FIFO.

back-out A process by which a flawed received packet that has been placed in a set of received buffers is
removed. The Open HCI backs-out a packet by ensuring that reported buffer space availability
does not reflect flawed packet reception.

big endian A term used to describe the arithmetic significance of data bytes within a multiple data-byte
value; the data byte with the largest address is the least significant.

bridge A hardware adapter that forwards transactions between Buses.

buffer-fill mode A receive mode in which packet data is concatenated into receive buffers

channel Refers to afisochronous channelumber.

CSR architecture ISO/IEC 13213: 1994 [ANSI/IEEE Std 1212, 1994 Editidnformation technology - Micropro-

cessor systems - Control and Status Registers (CSR) Architecture for microcomputeFineises
CSR architecture supports the concept of bus bridges, which can transparently forward transac-
tions from one compliant bus to another.

config ROM A portion of a node’s 1394 address space defined by clause 8 of ISO/IEC 13213:1994
[ANSI/IEEE Std 1212, 1994 Edition]. The region contains information describing the node and
its units. The region is read-only to other 1394 nodes. Se&al#d ROMandPCl Expansion
ROM

DMA context A distinct logical stream (not necessarily physical) through the Open HCI which can be described
by aDMA context progranand a minimum of two registers: ContextControl and CommandPtr.

DMA context program A list of DMA descriptorawhich identify buffers used for data transfer.

DMA controller Refers to the mechanism used in support of a specific DMA function. Each controller utilizes and
maintains its own set of registers to perform its specified functionality.

DMA descriptor A data structure used to describe buffers and buffer-list control.

DMA descriptor block A group of DMA descriptors that are contiguous in host memory and can therefore be prefetched
by the Host Controller. The last DMA descriptor in a block contains the address of the next block
as well as a count of the number of descriptors contained in the next block. This count is referred
to as the Z value.

dual-buffer-mode An isochronous receive mode in which a packet is divided into two portions each concatenated
into independent sets of receive buffers

Page 14 Copyright © 1996-2000 All rights reserved.

Conventions - Notation and Terms1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

EUI-64

generic software
Global Unique ID
GUID

GUID ROM

hardware reset

HC

HCI

INPUT_*
INPUT_LAST*
INPUT_MORE*

IR DMA
isochronous channel

isochronous stream
packet

IT DMA
link layer (LINK)

little endian

Node ID

OHCI
OUTPUT _*
OUTPUT_LAST*

OUTPUT_MORE*

packet-per-buffer mode

PCI

PCI Expansion ROM

PHY

Extended Unique Identifier. S&dobal Unique IDbelow.
Generic software is software that has no specific knowledge of a particular implementation.
SeeGUID.

Global UniguelD -A 64-bit node unique identifier, comprised of a 24-bit node company ID and
a 40-bit chip ID

A hardware component that holds the EUI-64 of the node and is automatically loaded into the
GlobalUniquelD registers of the controller when power is applied. Additional information may
be stored in the GUID ROM and is available via the controller's GUID ROM register. See also
Config ROMandPCI Expansion ROM.

Refers to a host power reset.

HostController. The device whose interface is defined by this specification.

H ostControllerinterface. The interface defined by this specification.

Abbreviated notation for INPUT_MORE and INPUT_LAST DMA descriptor commands.
Abbreviated notation for INPUT_LAST and INPUT_LAST-Immediate descriptor commands.
Abbreviated notation for INPUT_MORE and INPUT_MORE-Immediate descriptor commands.
| sochronoufkeceiveDMA.

Within the packet header of an IEEE 1394 isochronous packet there is a 6 bit channel number.
Receivers “listen” for packets transmitted with particular channel number(s).

A stream packet for which both channel and bandwidth have been reserved at the isochronous
resource manager. Only one talker may transmit an isochronous stream packet during a single iso
chronous cycle. Isochronous stream packets shall not be transmitted outside of the isochronous
period. See alsasynchronous stream packaidstream packet

| sochronouSransmitDMA.

The layer, in a stack of three protocol layers defined for the Serial Bus, that provides the service
to the transaction layer of one-way data transfer with confirmation of reception. The link layer
also provides addressing, data checking, and data framing. The link layer also provides an isoch-

ronous data transfer service directly to the applicaﬁion.

A term used to describe the arithmetic significance of data-byte addresses. With little-endian, the
data byte with the smallest address is the least significant.

This is a unique 16-bit number, which distinguishes the node from other nodes in thebsystem.
O penHostControllerInterface.

Abbreviated notation for OUTPUT_MORE and OUTPUT_LAST DMA descriptor commands.

Abbreviated notation for OUTPUT_LAST and OUTPUT_LAST-Immediate descriptor
commands.

Abbreviated notation for OUTPUT_MORE and OUTPUT_MORE-Immediate descriptor
commands.

An isochronous receive mode in which each isochronous packet is placed into its own set of
buffers independent of other packets

PeripheralComponent nterconnect. The PCI Local Bus Specification defines a 32-bit or 64-bit
bus with multiplexed address and data lines. The specification defines the protocol, electrical,
mechanical, and configuration for PCl components and expansion boards. The bus is intended for
use as an interconnect mechanism between highly-integrated peripheral controller components,

peripheral add-in boards, and processor/memory systems.

A hardware component on a PCl add-in card that contains the x86 BIOS and/or Open Firmware
required by the device. See alBonfig ROMandGUID ROM

Abbreviation for the physical Iay@r.

Copyright © 1996-2000 All rights reserved.

Page 15

Conventions - Notation and Terms1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

physical layer

Physical Request Unit

Physical Response Unit
posted write

ROM
stream packet

quadlet
soft reset

Z block

The layer, in a stack of three protocol layers defined for the Serial Bus, that translates the logical
symbols used by the link layer into electrical signals on the different Serial Bus media. The
physical layer guarantees that only one node at a time is sending data and defines the mechanical

interfaces for the Serial Blfs.

PysicalRequestUnit. Refers to the asynchronous receive DMA subunit that handles physical
requests.

Refers to the asynchronous transmit DMA subunit that handles physical responses.

A write request received by the Host Controller for which the Host Controller sends an
ack _complete before the data is actually written to system memory.

ReadOnly Memory. Se€onfig ROM GUID ROMandPCI Expansion ROM

A 1394 primary packet with transaction code 4’hA. See adymchronous stream pacletdiso-
chronous stream packet

A 32-bit word.

Refers to a Host Controller reset that occurs when host software sets HCControl.softReset. See
section 5.7, “HCControl registers (set and clear).”

SeeDMA descriptor block

a. PCI Local Bus Specification - Revision 2.2, December 18, 1998. PCI Special Interest Group.
b. IEEE Standard for a High Performance Serial Bus, Std 1394-1995, The Institute of Electrical And Electronics Engi-
neers, Inc., New York, NY.

Page 16

Copyright © 1996-2000 All rights reserved.

Common DMA Controller Features1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

3. Common DMA Controller Features

The 1394 Open HCI provides several types of DMA functionality:

a) General-purpose DMA handling asynchronous transmit and receive packets and isochronous transmit and receiv
packets.

b) An inbound bus bridge function that allows 1394 devices to directly access system memory called “physical
DMA.”

c) A separate write buffer for the received self-ID packets.

d) A mapping between a 1K byte block in system memory and the first 1K of 1394 Configuration ROM.

This section describes the common controller features and attributes.

3.1 Context Registers

A context provides the basic information to the Host Controller to allow it to fetch and process descriptors for one of the
several DMA controllers. All contexts (except for SelfID) minimally have a ContextControl Register and a CommandPtr
Register. The format of the ContextControl Registers is DMA controller specific but all ContextControl registers mini-
mally have the bits as shown in figure 3-1 and described in table 3-1. The CommandPtr Registers for all controllers are
the same and follow the format shown in figure 3-2 and described in table 3-3.

3.1.1 ContextControl register

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0
T T 1 1
spd event
code
| | | | | |
|
run
active
dead
wake
Figure 3-1 — ContextControl (set and clear) register format
Table 3-1 — ContextControl (set and clear) register description
Field rscu |reset Description
run rscu 1'b0 The run bit is set by software to enable descriptor processing for a context gnd

cleared by software to stop descriptor processing. The Host Controller shall only
change this bit on a hardware or software reset to set it to 0. See section 3.1|1.1 for
details.

wake rsu undef Software sets this bit to 1 to cause the Host Controller to continue or resume| descrip-
tor processing. The Host Controller shall clear this bit on every descriptor fetch. See
section 3.1.1.2 for details.

dead ru 1'b0 The Host Controller sets this bit when it encounters a fatal error. The Host Controller
clears this bit when software clears the run bit. See section 3.1.1.4 for detaild.
active ru 1'b0 The Host Controller sets this bit to 1 when it is processing descriptors. See

section 3.1.1.3 for details.

Copyright © 1996-2000 All rights reserved. Page 17

Common DMA Controller Features1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 3-1 — ContextControl (set and clear) register description

Field rscu |reset Description

spd ru undef This field indicates the speed at which the packet was received. 3'b000 = 100
Mbits/sec, 3'b001 = 200 Mbits/sec and 3'b010 = 400 Mbits/sec. All other valugs are
reserved. Spd only contains meaningful information for receive contexts.

Software should not attempt to interpret the contents of this field while the
ContextControhctive or ContextControlvakebits are set.

event code ru undef This field holds the acknowledge sent by the Link core for this packet, or an inter-
nally generated error code (evt_*) if the packet was not transferred successfully. All
possible event codes are shown in Table 3-2, “Packet event codes,” below.

The packet event codes shown in the table below are possible values for the five-bit Contex¢@entfield. This field

shall contain either a 1394 defined ack code or an Open HCI generated event code. As described later in this document,
bits 0-15 of the ContextControl register can be written into host memory to indicate packet and/or DMA descriptor status.
However, all possible event codes that can appear in a particular context’s ContextControl register are not necessarily ever
written into host memory for a packet or DMA descriptor status, depending on circumstances and the functionality of the
context.

1394 ack codes are denoted by the high (fifth) bit set to 1 followed by the 1394 four-bit ack code as received from 1394
(e.g., 1394 ack _pending = 4’h2, Open HCI ack_pending = 5’'h12). The list of ack codes provided in the table below is
informative not normative; i.e., for asynchronous packets the event code can be set to any ack code specified in current

and future 1394 standards.

Open HCI generated event codes typically have an “evt_" prefix denoted by a code with the high (fifth) bit equal to 0. In
some cases, such as ack_data_error for isochronous receive, Open HCI generates a 1394 style “ack” code for ContextCon-

trol.event.
Table 3-2 — Packet event codes
Code | Name DMA | Meaning
5'h00 | evt_no_status AT,ARNo event status.
IT,IR
5'h01 |reserved
5'h02 | evt_long_packet IR The received data length was greater than the buffer's data_length.
5'h03 | evt_missing_ack AT A subaction gap was detected before an ack armritrezireceived ack had a parity

error.

5'h04 | evt_underrun AT Underrun on the corresponding FIFO. The packet was truncated.
5'h05 | evt_overrun IR A receive FIFO overflowed during the reception of an isochronous packet.
5'h06 | evt_descriptor_read AT,ARAn unrecoverable error occurred while the Host Controller was reading a descr|ptor
IT,IR |block.
5'h07 | evt_data_read AT, IT An error occurred while the Host Controller was attempting to read from host fnemory
in the data stage of descriptor processing.
5'h08 | evt_data_write AR,IR An error occurred while the Host Controller was attempting to write to host memory
IT either in the data stage of descriptor processing (AR, IR), or when processing g single
16-bit host memory write (IT).
5'h09 | evt_bus_reset AR Identifies a PHY packet in the receive buffer as being the synthesized bus resgt packet.

(See section 8.4.2.3).

Page 18

Copyright © 1996-2000 All rights reserved.

Common DMA Controller Features1394 Open Host Controller Interface Specification / Release 1.1

Table 3-2 — Packet event codes

Printed 1/10/00

Code | Name DMA | Meaning

5'hOA | evt_timeout AT, IT| Indicates that the asynchronous transmit response packet expired and was not
transmitted, or that an IT DMA context experienced a skip processing overflow (See
section 9.3.4).

5'hOB | evt_tcode_err AT, IT| A bad tCode is associated with this packet. The packet was flushed.

5'h0C- | reserved

5'h0D

5'hOE | evt_unknown AT,AR An error condition has occurred that cannot be represented by any other eventicodes

IT,IR | defined herein.

5'hOF | evt_flushed AT Sent by the link side of the output FIFO when asynchronous packets are beind flushec
due to a bus reset.

5’h10 |reserved Reserved for definition by future 1394 standards.

5'h11 | ack_complete AT,ARFor asynchronous request and response packets, this event indicates the destipation

IT,IR | node has successfully accepted the packet. If the packet was a request subactfon, the

destination node has successfully completed the transaction and no response spbactior
shall follow.
The event code for transmitted or received PHY, isochronous, asynchronous strgam and
broadcast packets, none of which yield a 1394 ack code, shall be set by hardware to
ack_complete unless an event occurs.

5'h12 | ack_pending AT,AR The destination node has successfully accepted the packet. If the packet was|a reque
subaction, a response subaction should follow at a later time. This code is not r¢turned
for a response subaction.

5'h13 |reserved Reserved for definition by future 1394 standards.

5'h14 | ack_busy X AT The packet could not be accepted after max ATRetries (see section 5.4) attenpts, anc
the last ack received was ack_busy_ X.

5'h15 | ack busy A AT The packet could not be accepted after max ATRetries (see section 5.4) attenpts, anc
the last ack received was ack _busy A.

5'h16 | ack _busy B AT The packet could not be accepted after max AT Retries (see section 5.4) attempts, an
the last ack received was ack_busy_ B.

5'h17 - | reserved Reserved for definition by future 1394 standards.

5'h1A

5'h1B | ack_tardy AT The destination node could not accept the packet because the link and higher layers ar
in a suspended state.

5'h1C |reserved Reserved for definition by future 1394 standards.

5'hlD | ack_data_error AT,IR| An AT context received an ack_data_error, or an IR context in packet-per-buff¢r mode
detected a data field CRC or data_length error.

5'h1E | ack_type_error AT,AR A field in the request packet header was set to an unsupported or incorrect value, or a
invalid transaction was attempted (e.g., a write to a read-only address).

5'h1lF |reserved Reserved for definition by future 1394 standards.

Copyright © 1996-2000 All rights reserved.

Page 19

Common DMA Controller Features1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

3.1.1.1 ContextControl.run

The ContextContralun bit is set by software when the Host Controller is to begin processing descriptors for the context.
Before software sets ContextContraoh, ContextControhctive shall not be set, and the CommandPtr Register for the
context shall contain a valid descriptor block address and a Z value that is appropriate for the descriptor block address.

Software may stop the Host Controller from further processing of a context by clearing ContextontWwhen a
ContextControkun is cleared, the Host Controller shall stop processing of the context in a manner that shall not impact
the operation of any other context or DMA controller. The Host Controller may require a significant amount of time to
safely stop processing for a context but when the Host Controller does stop, it shall clear ContexdCiorerdf.

software clears a ContextContrah for an isochronous context while the Host Controller is processing a packet for the
context, the Host Controller shall continue to receive or transmit the packet and update descriptor status. The Host
Controller, however, stops at the conclusion of that packet. If ContextCamtrid.cleared for a non-isochronous context,

the Host Controller shall stop processing at the next convenient point that guarantees the context and descriptors end up
in a consistent state (e.g., status updated if a packet was sent and acknowledged).

Clearing ContextContrauin can cause side effects that are DMA controller dependent. These effects are described in the
chapters that cover each of the DMA controllers.

When software clears ContextContrah and the Host Controller has stopped, the Host Controller is not necessarily in a
state that can be restarted simply by setting ContextCaninolSoftware shall ensure that CommandfscriptorAd-
dressand CommandP#.are set to valid values before setting ContextComtnul.

3.1.1.2 ContextControl.wake

When software adds to a list of descriptors for a context, the Host Controller may have already read the descriptor that
was at the end of the list before it was updated. The value that the Host Controller read may contain a Z value of zero
indicating the end of the descriptor list. The ContextContake bit provides a simple semaphore to the hardware to
indicate that software has appended to the descriptor list by changing a zero Z value to a non-zero Z value. If the Host
Controller had fetched a descriptor and the indicated branch or skip address had a Z value of zero before wake is set, then
the Host Controller shall reread the appropriate pointer value for that descriptor. If the Host Controller is not at the end of
the list then no action is taken when ContextContrakeis set.

For transmit contexts, and receive contextdurdfer-fill mode (a mode described later in which a context can receive
multiple packets into one data buffer), if the Z value is still zero, then the end of the list has been reached and the Host
Controller should clear ContextContiadtive For receive contexts in buffer-fill mode, if the Z value is still zero on the
reread, then the packet shall not be accepted. For asynchronous contexts, the Host Controller shall return the appropriate
ack _busy* code. In addition, the Host Controller shall “back out” the packet by not updating the buffer’s byte count
(resCount), and shall flush the packet from the FIFO. The Host Controller shall not go inactive, as there is still buffer
space available, and it is expected that software is attempting to provide more buffer space.

An IT context can fetch its next descriptor from either the branch address or the skip address in the last descriptor
processed, and shall keep track of which address was used when it fetches a Z value of zero. The same address shall be
used for the IT context when the next descriptor is reread because Context@ak#id.set.

For both transmit and receive contexts, if the Z value is now non-zero, the Host Controller shall continue processing.

In order to ensure that a wake condition is not missed, the Host Controller shall clear ContextGiketbaifore it reads
or rereads a descriptor.

ContextControwakeshall be ignored when ContextContrah is zero.

Page 20 Copyright © 1996-2000 All rights reserved.

Common DMA Controller Features1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

3.1.1.3 ContextControl.active

ContextControlctiveis set and cleared only by the Host Controller. It shall be set when the Host Controller receives an
indication from software that a valid descriptor is available for processing. This indication shall occur sometime after
software setting the ContextContrain or by software setting ContextContrake while ContextControfun is set.

There are four cases in which the Host Controller shall clear ContextCaatire. when a branch is indicated by a
descriptor but the Z value of the branch address is 0; when software clears ContextGoraral.the Host Controller

has reached a safe stopping point; while ContextCodé&adlis set; and after a hardware or software reset of the Host
Controller. Additionally, for the asynchronous transmit contexts (request and response), the Host Controller shall clear
ContextControkctive when a bus reset occurs.

Exceptions and clarifications to the ContextCon#diiive rules stated above for AT contexts that support out-of-order
pipelining are:

1) ContextControhctiveremains set when the end of a context program is reached (i.e. a Z value of the branch
address is 0) until all outstanding fetched descriptors are retired.

2) ContextControhctive remains set when software clears ContextComtnoluntil all outstanding fetched
descriptors are retired.

3) ContextControhctive remains set when a bus reset is detected until either packet completion status,
evt_flushed, or evt_missing_ack (see section 7.2.3.1) has been written to all outstanding fetched descriptors.

When ContextContradctiveis cleared and ContextContmain is already clear, the Host Controller shall set the IntEvent
bit for the context. This interrupt is the same interrupt that would have been generated by the context if a completec
descriptor had indicated that an interrupt should be generated.

3.1.1.4 ContextControl.dead

ContextControdeadis used to indicate a fatal error in processing a descriptor or an IT DMA skip processing overflow as
described in section 9.3.4. When ContextContieddis set by the Host Controller, ContextContactiveis immediately
cleared but ContextControln remains set. In addition, setting ContextContle&dcauses an unrecoverableError inter-
rupt event (see Table 6-1) and blocks a normal context event interrupt from being set.

ContextControdeadis immediately cleared when software clears ContextConirobr by either a hardware or software
reset of the Host Controller.

Software can determine the cause of a context going dead by checking the Contextentadde (table 3-2). The
defined reasons for the Host Controller to set ContextCodéadlare described in section 3.1.2.1 and section 13., “Host

Bus Errors.” AT contexts that support out-of-order pipelining shall hold off setting ContextCdeawivhen any of

these conditions occur until the dying context has normally processed all outstanding fetched descriptors to completior
and write status. Once AT activity is complete for the dying AT context, it shall set ContextCimatdol.

Copyright © 1996-2000 All rights reserved. Page 21

Common DMA Controller Features1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

3.1.2 CommandPtr register

31 30 29 28 27 26 25 24‘23 22 21 20,19 18 17 16‘15 14 13 12911 10 9 8|7 6 5 4,3 2 1 0
rrrrrrrrrtrrrrrrr -t T T T T T T T T T T [

descriptorAddress [31:4] Z

Figure 3-2 — CommandPtr register format

Table 3-3 — CommandPtr register description

Field rwu |reset | Description

descriptorAddress rwu| undeff Contains the upper 28 bits of the address of a 16-byte aligned descriptor bjock.

z rwu | undef | Indicates the number of contiguous 16-byte aligned blocks at the address pajnted to
by descriptorAddress. If Z is 0, it indicates that the descriptorAddress is not \alid.

section 3.1.2.1.

Valid values for Z are context specific. Handling of invalid Z values is descride in

Software initializes CommandRtescriptorAddresgo contain the address of the first descriptor block that the Host
Controller accesses when software enables the context by setting Context@ontrS8bftware also initializes
CommandP1Z to indicate the number of descriptors in the first descriptor block. Software shall only write to this register
when both ContextControun and ContextContractive are zero. The Host Controller is not required to enforce this
rule.

The Host Controller utilizes the CommandPtr register while processing a context. Software may read the CommandPtr
and the contents of CommandPtr are described in the table below (X='don’t care’):

Table 3-4 — CommandPtr read values

ContextControl fields
run | dead | active| wake CommandPtr.descriptorAddres¥alue

Points to the last descriptor executed or the next desciiptor
to be executed.

0 0 0 X

0 0 1 X Contents unspecified.
Refers to the descriptor block that contains the Z=0 thjat
1 0 0 0 | caused the Host Controller to set active to 0.

Contents unspecified.

0 1 X Points to the current descriptor block being processed or
the next descriptor block to be processed.

For AT DMA contexts, this field points to the descriptof
block furthest in the list that was accessed. For all oth
contexts, this field points to the descriptor block where a
fatal error occurred.

D
—_

If ContextControlkun and ContextContradead are both set, then descriptorAddress points to a descriptor within the
descriptor block in which an unrecoverable error occurred, except in the case of out-of-order AT pipelining in which
CommandPtdescriptorAddrespoints to the descriptor block furthest in the list (i.e. closest to the end) that was fetched.

Except for the case where software initializes CommandPtr, the value of CommaislBtrdefined and Z may contain
a value that is implementation dependent.

Page 22 Copyright © 1996-2000 All rights reserved.

Common DMA Controller Features1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

The value of CommandPtr is undefined after a hardware or software reset of the Host Controller.

3.1.2.1 Bad Z Value

When software sets ContextControh to 1 and CommandPZr.contains an invalid value for the controller and context,
or if a Z value is invalid for a fetched descriptor block in a running context, the Host Controller:

« shall set ContextContraleadto 1
« shall set ContextContr@ventto evt_unknown and
« shall not process any descriptors in that context.

3.2 List Management

All contexts use an identical method for controlling the processing of descriptors associated with the context. This
presents a uniform interface to controlling software and allows reuse of hardware on the Host Controller.

3.2.1 Software Behavior

3.2.1.1 Context Initialization

Software initializes the context by first checking to see that ContextCaouotrol.ContextControhctive and
ContextControdeadare all 0. Then, CommandRkescriptorAddresss written to point to a valid descriptor block and
CommandPtZ shall be set to a value that is consistent with the descriptor block. Then Context@oninaly be set.

3.2.1.2 Appending to Running List

Software may append to a list of descriptors at any time. Software may append either a single descriptor or a linked lis
of descriptors. When the to-be-appended list is properly formatted, software updates the branch address and Z value of tl
descriptor that was at the end of the list being processed by the Host Controller.

When software completes linking process it shall set ContextCaméikad.for the context. This ensures that the Host
Controller resumes operation if it had previously reached the end of the list and gone inactive.

3.2.1.3 Stopping a Context

Software may stop a running context by clearing ContextControlThe context may not stop immediately. To ensure
that the context has stopped, software shall wait for ContextCauttiveto be cleared by the Host Controller. This indi-
cates that the Host Controller has completed all processing associated with the context.

3.2.2 Hardware Behavior

The Host Controller has several DMA controllers each of which has one or more contexts. Each DMA controller shall
examine each of its contexts on a periodic basis and make operational decisions based on the context state as containec
ContextControl. The flow-chart for how a DMA controller uses the ContextControl state to govern descriptor processing
is shown below. This process shall be executed once each time a context is ‘scheduled’. Scheduling of a context is depe
dent on the DMA controller.

Copyright © 1996-2000 All rights reserved. Page 23

Common DMA Controller Features1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

dead=07?

yes

<>

‘yes

set
wake=0

Y

get branch
addr***

Y

yes

set cmd=
branch addr

v

set
active=1

_?
yes

—

set
active=0

no
no

set
active=0

b ¢

process

block**

<>

descriptor

no set
active=0

*yes

set cmd=
branch addr

** fetches and processes the descriptor
block. yields the branch entry (addr+2)
of the next cmd descriptor

*** refetch last known cmd’s

branch entry

“done” = wait until the next time the

context runs.

For the purposes of this flow chart, the
term “branch addr” includes skip ad-
dresses for IT contexts.

Figure 3-3 — Flow Chart for Processing a DMA Context

Page 24

Copyright © 1996-2000 All rights reserved.

Common DMA Controller Features1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

3.3 Asynchronous Receive
The Host Controller accepts 1394 transactions and groups them as follows:

1) physical requestsphysical requests, including physical read, physical write and lock requests to some CSR
registers (section 5.5), are handled directly by the Host Controller without assistance by system software.
DMA contexts and controllers that are used in a Host Controller for the physical request unit are
implementation specific. This specification places no limits on the physical response unit other than its
effective address range and the requirement that the Host Controller shall not block processing of other
transaction types while dealing with physical requests. Chapter 12., “Physical Requests,” provides details on
which requests can be processed as physical.

2) self-ID phasepackets- PHY packets with the selfID format can be received at any time. However, only those
packets that are received during the selfID phase of bus initialization which immediately follows a bus reset
are considered to be selfID phase packets and shall be stored in the selfID buffer. The Host Controller can be
programmed to accept or ignore selfID phase packets. When selfID phase packets are accepted, they ar
stored in a special memory buffer which has a dedicated controller and context. Because of this special
memory buffer, selflID phase packets can never get ‘stuck’ in a FIFO. See chapter 11., “Self ID Receive,” for
more information.

3) asynchronous responsewhen the host system initiates a request through the asynchronous transmit request
context, any response shall be handled by the asynchronous receive response context. The fact that ho:
system software initiates the process and the fact that the Host Controller has a separate context for response
allows system software to budget for all responses which ensures that the Host Controller will always have a
place in system memory to store a response when it arrives. In the unlikely event that the Host Controller
does not have a place for the response it is allowed to drop the response when it arrives. This causes a spli
transaction timeout.

4) asynchronous requestsa request may arrive at the Host Controller at any time. Additionally, a request can
be of any size up to the limits imposed by the max_rec field in the Bus_Info_Block. Due to the unpredictable
nature of this transaction type, it is impractical for the system software to ensure that there is always
sufficient buffer space defined in the asynchronous request receive buffers. If the FIFO which is receiving
requests becomes full, all subsequent requests shall be busied until there is room to receive them.

3.3.1 FIFO Implementation (informative)

The limitations and requirements for handling each of the transaction types suggest some ways of simplifying the
hardware implementation so that a FIFO is not needed for each of the input transaction types. One simplification would
be to place asynchronous requests into a first FIFO and then send all other transaction types (except for physical read
through a second FIFO. This two FIFO scheme provides the necessary non-blocking behavior because the Host Controlle
will be able to remove transactions from the second FIFO whether or not buffer space exists for the transaction. The
selflD, isochronous and asynchronous response transactions will either have a buffer defined for the transaction or it i
permissible to discard the transaction if no buffer exists to receive it. This leaves requests to be sent to the first FIFO
When that FIFO fills, additional requests will receive ack_busy until system software makes space available to the Hosl
Controller by adding descriptors to the context.

There is an alternative implementation which is to use a single physical FIFO but ensure that it provides the behavior o
the multiple FIFO’s. This is a bit more complex than the dual FIFO case but may result in a net savings in hardware. The
issue with using a single physical FIFO for all incoming transactions is to make sure that no request is placed in the FIFC
unless there is a place for it in system memory. There are several way of accomplishing this with one given as an exampl
here.

On the link side of the input FIFO a counter is maintained. This counter is initialized to 0 when, for the AR DMA request

context, ContextContralin is not set. When the system side of the FIFO reads a request descriptor, the reqCount value
from the descriptor is passed to the link side of the FIFO. The link side then adds this value to the current count value
When the count value on the link side is greater than zero, the link can accept request data and place it into the FIFC
After each request quadlet is placed in the FIFO, other than those for a physical write request, the link side decrement
the counter. When the counter reaches 1, the link checks to see if the end of packet has been reached. If it has, the li

Copyright © 1996-2000 All rights reserved. Page 25

Common DMA Controller Features1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

uses the last entry for the footer value (cycleCount, speed and ackSent.) If the end of the packet has not been reached, the
link places an error value in the last quadlet to indicate that the packet was not totally received and then the link returns
an ack busy to the requestor. The system side of the fifo can indicate that additional space has been made available by
writing a new value to the link side. The link side adds these values to the current count value.

The system side of the FIFO sends count values to the link side on two occasions. The first is when a descriptor is
initially fetched and the reqCount in the descriptor is sent to the link side. It is required that the Host Controller have a
look ahead of at least one descriptor (current plus next). If the Host Controller does not look ahead, the link side cannot
accept packets that cross descriptor boundaries.

The second instance when the system side of the input FIFO sends a count value to the link side is when the system side
sees a packet that has an error. Packets that contain errors (e.g., CRC) are 'backed out' of the buffer when the context is in
buffer fill or dual buffer modes. The AR DMA request context can only be in buffer fill mode so all bad packets will be
'backed out'. When a packet is backed out, the space that was allocated for that packet is made available for other packets
and the link side of the FIFO will be informed of the amount of data that has been backed out. A simple implementation
of this is to maintain a counter on the system side of the FIFO that is reset at the beginning of each packet. As each
qguadlet is removed from the FIFO, the counter is incremented. At the end of the packet, the Host Controller checks the
error code. If it indicates that there was an error, and the packet was a request, the count value is sent to the link side of
the FIFO to indicate the amount of space that has been ‘reclaimed'.

The regCount field in a descriptor can indicate a size as large as 65,532 bytes (16,383 quadlets.) If quadlet counts are
maintained this means that 14 bits are required to indicate the maximum number of quadlets (14’h3FFF). To allow for
look ahead, the link side counter should be able to hold a value equal to two maximum sized buffers which is 32,766
(15’h7FFE) quadlets or 15 bits. Since the system software is required to allocate buffers that are sized to accept the
maximum sized packet (as described in max_rec of the Bus_Info_Block) the Host Controller need only do one level of
look ahead on the buffer descriptors to make sure that the maximum sized packet can be accepted.

3.3.1.1 Unrecoverable Error (informative)

If an unrecoverable error occurs when the Host Controller is writing to an AR DMA buffer, a fail indication is sent to the
link side of the FIFO. This indicates that the link side can busy further requests or responses that are destined for that AR
DMA context.

If the AR DMA request context has an unrecoverable error, the system side of the FIFO will continue to unload the FIFO
even though the AR DMA request context is dead. All asynchronous requests that would have been sent to the AR DMA
request queue shall be dropped and no responses for them shall be sent to the initiating node. Dropping requests destined
for the AR DMA request queue is acceptable because i) AR DMA read requests are always split transactions
(ack_pended), ii) write requests within the physical range have been ack_pended and iii) write requests above the physical
range which have been posted (ack_completed) are by definition permitted to fail.

If the AR DMA response context has an unrecoverable error, the system side of the FIFO will continue to unload the
FIFO even though the AR DMA response context is dead.

3.3.2 Ack Codes for Write Requests

For write requests that are to be handled by the Physical Request controller, the Host Controller may send an
ack _complete before the data is actually written to system memory. For a full description of which requests are candidates
for Physical Requests, refer to Chapter 12.

The ack code sent for write requests to offsets in the range of PhysicalUpperBound to 48'hFFFE_FFFF_FFFF when not
busied shall be ack _complete. The ack code sent for requests to offsets in the range 48hFFFF_0000_0000 to
48’'hFFFF_FFFF_FFFF and for block requests with a non-zero extended tcode shall be ack _pending.

Page 26 Copyright © 1996-2000 All rights reserved.

Common DMA Controller Features1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

3.3.3 Posted Writes

A write request that is handled by the Physical Request controller or a write request in the address range
PhysicalUpperBound to 48'hFFFE_FFFF_FFFF and handled by the Asynchronous Request Unit, may generate ar
ack_complete before the data is actually written to the designated system memory location. These writes are referred to
posted writes.

Write requests to the physical memory range of the host may be posted if the host controller supports the
PostedWriteAddressLo/Hi error registers (see section 13.2.8.1) and software has enabled posted writes (see section 5.7).
posting is not enabled/supported, the Host Controller shall not return a complete indication (ack _complete or
resp_complete) until the data has been successfully written to the addressed location in physical memory.

If posting of physical writes is supported and enabled, then the Host Controller may return ack_complete to a physical
write request with certain restrictions.

« A Host Controller implementation is allowed to support any number of posted writes. However, for error reporting
purposes a posted write is considered pending until the write is actually completed to the offset address. For eacl
pending physical posted write, there shall be an error reporting register to hold the request’s source node ID and 48
bit offset address if that posted write fails. If the maximum allowed posted writes are pending, the Host Controller
shall return either ack_pending or ack_busy* for subsequent posted write request candidates and shall only retur
resp_complete when those writes have actually been performed.

* Read and write requests within the Asynchronous Request FIFO shathseainyosted writes, whether posted in
the Physicabr Asynchronous Request FIFO's.

* Within the Physical Request FIFO, read requests may coherently pass posted writes, but writes requests and post¢
writes shall noipass other writes posted in the Physical Request FIFO. A physical read request may pass a physica
posted write if the read request address range does not include addresses affected by the posted writes, or if tt
physical read response returns data to be written by the posted physical write. Physical read and write requests mg
pass writes posted to the Asynchronous Request FIFO.

In conjunction with the ordering rules set forth above for Host Controller implementations, the following protocol
restrictions shall be adhered to so that proper ordering and therefore data integrity is maintained. Visébterside-

effectis used to mean an indirect action caused by a request or response which results in the alteration of the contents
usage of host memory outside the address scope of the request or response.

* Write requests within the range PhysicalUpperBound to 48’hFFFE_FFFF_FFFF shall not have 1394 visible side-
effects.

* Read or write requests within the range 48’h0 to PhysicalUpperBound-1, whether handled by the Physical Reques
controller or not, shall not have 1394 visible side-effects.

* Read requests to CSR addresses which are processed autonomously by the Host Controller (see section 5.5) shall r
have 1394 visible side-effects

If an error occurs in writing the posted physical write data packet, then the Host Controller sets an interrupt event to
notify software and provides information about the failed write in an error reporting register. For more information about
error handling of posted physical writes, refer to section 13.2.8.

Data write errors that occur when transferring posted write requests from the asynchronous receive FIFO are handle
differently than posted physical writes. Refer to section 13.2.5 for more information.

Copyright © 1996-2000 All rights reserved. Page 27

Common DMA Controller Features1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

3.3.4 Retries
For asynchronous receive, the Host Controller should support dual-phase retry for packets that are busied.
For asynchronous transmit, Host Controller implementations shall support the single-phase retry protocol and may

optionally support the dual-phase retry protocol. The implemented retry mechanism shall be managed by hardware and
invisible to software. Refer to section 7.6 and table 7-12 for details.

3.4 DMA Summary

The following chapters provide details about Open HCI registers and interrupts, and about all the supported DMA types.
The table below is a summary of DMA information for reference purposes. Each DMA type is fully described in the
indicated chapter.

Table 3-5 — DMA Summary

Per Context Per Context tcodes
DMA Contexts Registers Interrupts Receive mode DMA commands Z | (4hx)
Asynchronous 0,1,4,
Transmit | 1 Request SOMeXICONtIol reqrycomplete OUTPUT_MORE 5o
(section 7.) Commandptr OUTPUT_MORE-Immediate AE
ContextContro OUTPUT_LAST 2815 6.7
1 RESponSECOmmandPtr respTxComplete OUTPUT_LAST-Immediate ' B, J
Asynchronous 1 Request ContextContro|l ARRQ 0,1,4,
(Szgtcigg’g) CommandPtr | RQPkt buffer-fll |INPUT_MORE 1 |59E
) 1 Respons:‘ContextContro ARRS 2,6,7,
"CommandPtr | RSPkt B
Isochronous OUTPUT_MORE
Transmit isochTx OUTPUT_MORE-Immediate
(section9) | 432 | SONEXCONIO} i oy mitintEvenn OUTPUT_LAST 18| A
isoXmitintMaskn OUTPUT_LAST-Immediate
STORE_VALUE
Isochronous ContextContro| isochRx paCket-per-buf'ferINPUT—MORE 1-8
Receive . INPUT_LAST
(section 10.) 4-32 CommandPtr !soRechntEvem : A
ContextMatch | isoRecvintMask buffer-fill INPUT_MORE 1
dual-buffer DUALBUFFER 2
Self-ID SelfIDBuffer :
(section 11.) 1 SelfiDCount SelfIDComplete buffer-fill N/A

E* - this may include certain PHY packets and the synthesized phy (bus_reset) packet.

For transmit, software may use the tcodes as specified in the table above. The Host Controller hardware shall allow any

IEEE 1394 tcode except tcode “8” (cycle start) to be transmitted by any asynchronous transmit context.

For receive, the Host Controller shall only receive packets which have tcodes that are defined by an approved IEEE 1394

standard. Packets with undefined tcodes shall be dropped.

Page 28

Copyright © 1996-2000 All rights reserved.

Register addressing

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

4. Registeraddressing

The 1394 Open HCI's registers occupy a 2048 byte address space. This 2048 byte space is allocated to control registe
common DMA controller registers and individual DMA context registers as indicated below. Registers shall be accessed
as 32-bit entities; 8-bit or 16-bit access to Host Controller registers is not supported. Writes to reserved addresses of tt
1394 Open HCI address space may have unexpected results and are disallowed. Reads of reserved addresses are ul
fined. Host processors shall only access Host Controller registers with quadlet reads or writes on quadlet boundaries.

Host Controller registers which are accessed through the physical DMA unit yield unspecified results.

When HCControLPSis 0, the SCLK signal from the PHY is not present, and access to registers implemented in the
SCLK domain is undefined. Only the following registers may reside in the SCLK domain. Access to these registers is

undefined until SCLK is received after HCContt#Sis set to 1.

a)
b)
c)
d)
e)
)

9)
h)
i)

)

v)

In the normal operation of some systems, the SCLK clock signal from the PHY might not be active at all times when
HCControlLPSis set to 1. Software shall verify accesses to the Open HCI registers listed above againstregBeent.
cessFailto guarantee successful completion. Refer to section 1.4.1 for more information.

Open HCI Offset 11'h00C
Open HCI Offset 11'h010
Open HCI Offset 11'h014
Open HCI Offset 11'h070
Open HCI Offset 11'h074
Open HCI Offset 11'h078
Open HCI Offset 11'h07C
Open HCI Offset 11'h0ODC
Open HCI Offset 11'hOEO
Open HCI Offset 11'hOE4
Open HCI Offset 11'hOE8
Open HCI Offset 11'hOEC
Open HCI Offset 11'hOFO0
Open HCI Offset 11'h100
Open HCI Offset 11'h104
Open HCI Offset 11'h108
Open HCI Offset 11'h10C
Open HCI Offset 11'h110
Open HCI Offset 11'h114
Open HCI Offset 11'h118
Open HCI Offset 11'h11C

Open HCI Offset 11'h400 + 32*n
Open HCI Offset 11'h404 + 32*n

- CSRReadData

- CSRCompareData

- CSRControl

- IRMultiChanMaskHiSet

- IRMultiChanMaskHiClear
- IRMultiChanMaskLoSet

- IRMultiChanMaskLoClear
- Fairness Control

- LinkControlSet

- LinkControlClear

- Node ID

- Phy Control

- Isochronous Cycle Timer

- AsynchronousRequestFilterHiSet

- AsynchronousRequestFilterHiClear
- AsynchronousRequestFilterLoSet

- AsynchronousRequestFilterLoClear
- PhysicalRequestFilterHiSet

- PhysicalRequestFilterHiClear

- PhysicalRequestFilterLoSet

- PhysicalRequestFilterLoClear

- IRContextControlSet
- IRContextControlClear

All addresses within this 2K address space are reserved for Open HCI and not for vendor defined registers.

Copyright © 1996-2000 All rights reserved.

Page 29

Register addressing 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Annex A. describes how this memory space is accessed from PCI.

Table 4-1 — 1394 Open HCI register space map

Offset (binary) Space
00R_RRRR_RRO00 control register space
(11'h000 to 11°'h17C) R_RRRR_RR selects register
001_1ccR_RRO0OO Asynchronous DMA context register space
(11°'h180 to 11'h1FC) cc = 2'h0-2'h3 selects DMA context
R_RR selects DMA context register
01t_tttt RROO Isochronous Transmit DMA context register space
(11'h200 to 11'h3FC) t_tttt = 5’h00-5'h1F selects IT DMA context
RR selects DMA context register
1vv_vvwwR_RROO Isochronous Receive DMA context register space
(11'h400 to 11'7FC) w_vwv = 5'h00-5'h1F selects IR DMA context

R_RR selects DMA context register

4.1 DMA Context Number Assignments

The 1394 Open HCI contains up to 68 DMA contexts, 4 for asynchronous and from 8 up to 64 for isochronous. The
controller number assignments for asynchronous DMA are illustrated below. Note that these numbers correspond to the
“cc” DMA controller select values in the table above.

Table 4-2 — Asynchronous DMA Context number assignments

DMA Context
Number Context Name
2'h0 Asynchronous Transmit Request
2'hl Asynchronous Transmit Response
2'h2 Asynchronous Request Receive
2'h3 Asynchronous Response Receive

For the isochronous transmit contextdftt represents IT contexts numbered 0-31.
For the isochronous receive contexte, vvv represents IR contexts numbered 0-31.

4.2 Register Map

Table 4-3 — Register addresses (Sheet 1 of 4)

Offset DMA Context Read value Write value See clause
11'h000 Version - 5.2
11'h004 GUID_ROM GUID_ROM 5.3
11'h008 ATRetries ATRetries 54
11'h00C CSRReadData CSRWriteData 55.1
11'h010 CSRCompareData CSRCompareData 55.1
11'h014 CSRControl CSRControl 5.5.1
11'h018 ConfigROMhdr ConfigROMhdr 5.5.2
11'h01C BusID - 5.5.3

Page 30 Copyright © 1996-2000 All rights reserved.

Register addressing

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

Table 4-3 — Register addresses (Sheet 2 of 4)

Offset DMA Context Read value Write value See clause
11'h020 BusOptions BusOptions 554
11'h024 GUIDHi GUIDHi 5.5.5
11'h028 GUIDLo GUIDLo 5.5.5
11'h02C Reserved Reserved
11'h030 Reserved Reserved
11'h034 ConfigROMmap ConfigROMmap 5.5.6
11'h038 PostedWriteAddressLo PostedWriteAddressLo 13.2.8.1
11'h03C PostedWriteAddressHi PostedWriteAddressHi
11'h040 Vendor ID - 5.6
11’'h044 - Reserved Reserved
11'h04C
11'h050 HCControl HCControlSet 5.7
11'h054 HCControlClear 5.7
11’'h058 - Reserved Reserved
11’ho5C
11'h060 | Self ID Reserved Reserved
11'h064 SelfIDBuffer SelfIDBuffer 11.1
11'h068 SelfIDCount 11.2
11'h06C Reserved Reserved
11'h070 IRMultiChanMaskHi IRMultiChanMaskHiSet 10.4.1.1
11'h074 IRMultiChanMaskHiClear
11'h078 IRMultiChanMaskLo IRMultiChanMaskLoSet
11'h07C IRMultiChanMaskLoClear
11'h080 IntEvent IntEventSet 6.1
11'h084 (IntEvent & IntMask) IntEventClear
11'h088 IntMask IntMaskSet 6.2
11'h08C IntMaskClear
11'h090 IsoXmitIntEvent IsoXmitIntEventSet 6.3.1
11'h094 (IsoXmitintEvent & IsoXmitintEventClear

IsoXmitIntMask)
11'h098 IsoXmitintMask IsoXmitintMaskSet 6.3.2
11'h09C IsoXmitIntMaskClear
11'h0AO IsoRecviIntEvent IsoRecvIntEventSet 6.4.1
11'h0A4 (IsoRecvintEvent & IsoRecvIntEventClear

IsoRecvIntMask)
11'h0AS8 IsoRecvIntMask IsoRecvIntMaskSet 6.4.2
11'hOAC IsoRecvIntMaskClear
11'h0BO InitialBandwidthAvailable InitialBandwidthAvailable 5.8
11'h0B4 InitialChannelsAvailableHi InitialChannelsAvailableHi 5.8

Copyright © 1996-2000 All rights reserved. Page 31

Register addressing

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

Table 4-3 — Register addresses (Sheet 3 of 4)

Offset DMA Context Read value Write value See clause
11'h0B8 InitialChannelsAvailableLo InitialChannelsAvailableLo 5.8
11'h0OBC- Reserved Reserved
11'h0D8
11'hoDC Fairness Control Fairness Control 5.9
11'hOEO LinkControl LinkControlSet 5.10
11'hOE4 LinkControlClear
11’hOE8 Node ID Node ID 5.11
11'hOEC Phy Control Phy Control 5.12
11'hOF0 Isochronous Cycle Timer Isochronous Cycle Timer 5.13
11’hOF4- Reserved Reserved
11'hOFC
11'h100 AsynchronousRequestFilterHi AsynchronousRequestFilterHi$et 5.14.1
11'h104 AsynchronousRequestFilterHiClgar
11'h108 AsynchronousRequestFilterLo AsynchronousRequestFilterLoSet
11'hi10C AsynchronousRequestFilterLoClear
11'h110 PhysicalRequestFilterHi PhysicalRequestFilterHiSet 5.14.2
11'h114 PhysicalRequestFilterHiClear
11'h118 PhysicalRequestFilterLo PhysicalRequestFilterLoSet
11’'h11C PhysicalRequestFilterLoClear
11'h120 PhysicalUpperBound PhysicalUpperBound 5.15
11'h124- Reserved Reserved
11'h17C
11'h180 | Async request | ContextControl ContextControlSet 3.1,7.22
11'h184 transmit ContextControlClear
11'h188 Reserved Reserved
11'h18C CommandPtr CommandPtr 312,72
11’h190- Reserved Reserved
11'h19C
11'h1A0 | Async response| ContextControl ContextControlSet 3.1,7.22
11'h1A4 transmit ContextControlClear
11'h1A8 Reserved Reserved
11'h1AC CommandPtr CommandPtr 3.1.2,7.2
11'h1BO- Reserved Reserved
11'h1BF
11'h1CO | Async request | ContextControl ContextControlSet 3.1,8.3.2
11'h1C4 receive ContextControlClear
11'h1C8 Reserved Reserved
11'hlCC CommandPtr CommandPtr 3.1.2,8.3
11’h1DO- Reserved Reserved
11'h1DF

Page 32 Copyright © 1996-2000 All rights reserved.

Register addressing

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

Table 4-3 — Register addresses (Sheet 4 of 4)

Offset DMA Context Read value Write value See clause
11'h1EOQ | Async response| ContextControl ContextControlSet 3.1,8.3.2
11’'h1E4 | €CceIve ContextControlClear
11’h1E8 Reserved Reserved
11'h1EC CommandPtr CommandPtr 3.1.2, 8.3]1
11’h1FO0- Reserved Reserved
11’h1FF
11’h200 +| Isoch transmit n,| ContextControl ContextControlSet 3.1,9.2.2
16*n where “n” = 0 for
11'h204+ context 0, 1 for ContextControlClear
16*n context 1, etc...
11’h208+ Reserved Reserved
16*n
11'h20C + CommandPtr CommandPtr 3.1.2,9.2
16*n
11’h400 +| Isoch receive n, | ContextControl ContextControlSet 3.1,10.3.2
32*n where “n” = 0 for
11'h404 + context 0, 1 for ContextControlClear
321 context 1, etc.
11’'h408 + Reserved Reserved
32*n
11'h40C + CommandPtr CommandPtr 3.1.2,10.3.1
32*n
11’'h410+ ContextMatch ContextMatch 10.3.3
32*n
11'h414+ Reserved Reserved
32*n
11'h418+ Reserved Reserved
32*n
11'h41C+ Reserved Reserved
32*n
Copyright © 1996-2000 All rights reserved. Page 33

Register addressing 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Page 34 Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5. 1394 OpenHCI Registers

5.1 Register Conventions

Unless otherwise specified, all register fields will initialize as zeros. For software, reads of reserved locations (indicated
by a hatched or grayed-out pattern) yield undefined results.

Similarly, unless otherwise specified, all fields will remain unchanged after a 1394 bus reset.

Refer to Section 2.1.4 for an explanation of register notation.

5.2 Version Register

This register contains a 32 bit value which indicates the version and capabilities of the interface. The register is expecte
to be used to indicate the level of functionality present in the 1394 Open HCI. This register is read only.

Open HCI Offset 11'h000

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0
P P

version revision

I
GUID_ROM

Figure 5-1 — Version register

Table 5-1 — Version register fields

field name rwu | reset | description

GUID_ROM r N/A | When set to one, a GUID ROM is present and shall be accessible throygh the
GUID_ROM register, and the third and fourth quadlets of the bus_info_llock
shall be automatically loaded on hardware reset.

version r N/A | Major version of the Open HCI. This field contains the BCD encoded value
representing the major version of the highest numbered 1394 Open H(
specification with which this controller is compliant. For example, a Hogt
Controller implemented to this specification (Release 1.1) will have a vefsion
value of 8'h01 and a Host Controller implemented to version 2.15 of this
specification will have a value of 8'h02.

revision r N/A | Minor version of the Open HCI. This field contains the BCD encoded value
representing the minor version of the highest numbered 1394 Open H(
specification with which this controller is compliant. For example, a Hogt
Controller implemented to this specification (Release 1.1) will have a re\ision
value of 8'h10 and a Host Controller implemented to version 2.15 of this
specification will have a value of 8'h15.

Copyright © 1996-2000 All rights reserved. Page 35

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5.3 GUID ROM register (optional)
The GUID ROM register is used to access the GUID ROM, and shall be present if the @UsivrROM bit is set.

Open HCI Offset 11'h004

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0
P T T T 1T T

rdData miniROM
I I A A |
addrReset
rdStart
Figure 5-2 — GUID ROM register
Table 5-2 — GUID ROM register fields

field name rwu | reset | description
addrReset rsu| 1'b0| Software sets this bit to one to reset the GUID ROM address to zero. When the

Host Controller completes the reset, it clears addrReset to zero. Upon refsetting
the GUID ROM address, the host controller doesautomatically fill rdData
with the data from byte address 0.

rdStart rsu| 1'b0| Aread of the currently addressed GUID ROM byte is started on the trahsition
of this bit from a zero to a one. When the Host Controller completes the|read,
it clears rdStart to zero and advances the GUID ROM byte address by orje byte.

rdData ru undef The data read from the GUID ROM.

miniROM r N/A | The Host Controller indicates the first byte location of the miniROM image in
the GUID ROM through this field. The Host Controller returns a value of gero
in this field to indicate that no miniROM is implemented.

See Annex F., “Extended Config ROM Entries,” for more information on the
MiniROM.

To initialize the GUID ROM read address, software sets GUIDR@MrResetto one. Once software detects that
GUIDROM.addrResets zero, indicating that the reset has completed, then software sets GUIRISTivt.to read a
byte. Upon the completion of each read, the Host Controller places the read byte into GUIBR&&].advances the
GUID ROM address by one byte to set up for the next read, and clears GUIEdSDdMt to O to indicate to software that
the requested byte has been read.

5.4 ATRetries Register

The AT retries register holds the number of times the 1394 Open HCI can attempt to do a retry for asynchronous DMA
request transmit and for asynchronous physical and DMA response transmit. Receipt of a “busy” acknowledge shall cause
a retry subject to the ATRetries Register even if an underrun occurred during a packet transmission resulting in a “busy”
ack from the target node. A packet shall not be retried under any other circumstance, including receipt of
evt_missing_ack.

Page 36 Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Open HCI Offset 11'h008

31302928\27262524‘23222120\191817161514131211109 8/7 6 5 4,3 2 1 0
ol T L T T

secondLimit maxPhysRespRetries maxATReqRetries
maxATRespRetries

Figure 5-3 — ATRetries register

Table 5-3 — ATRetries register fields

field name rwu |reset | description

Together the secondLimit and cycleLimit fields define a time limit for retfy
secondLimit 3'ho |attempts when the outbound dual-phase retry protocol is in use. The
secondLimit field represents a count in seconds modulo 8, and cycleLim
represents a count in cycles modulo 8000.
or If the retry time expires for a physical response, the packet is discarded [by the
cycleLimit wu 13'ho | Host Controller. Software isot notified.
If outbound dual-phase retry_is rniotplemented, both fields shall be read-op
and shall read as 16'h0.
If outbound dual-phase retry iimplemented, both fields shall be read/writ
and a value of 0 written to both fields shall disable dual phase retry.

maxPhysRespRetries rw undef The maxPhysRespRetries field tells the Physical Response Unit how many
times to attempt to retry the transmit operation for the response packet{ Note

that this value is used only for responsephgsicalrequests.
If the retry count expires for a physical response, the packet is discarded|by the
Host Controller. Software isot notified.

maxATRespRetries rw| undef The maxATRespRetries field tells the Asynchronous Transmit Response Unit
how many times to attempt to retry the transmit operation for a softwarg
transmitted (non-physical) asynchronous response packet.

maxATReqRetries rw | undef The maxATReqRetries field tells the Asynchronous Transmit Request Unit
how many times to attempt to retry the transmit operation for an asynchrpnous
request packet.

it

ru

Yy

D

The Host Controller is required to pace the retries of both requests and responses using fairness intervals as described
IEEE1394 standards.

The interrelationship between retries and packet transmission is as follows:

» Retried requests shall not block responses.

* Retried requests may block other requests.

* Retried responses should not block requests.

» Retried AT DMA responses shall not block physical responses.

» Retried responses may block AT DMA responses.

» Retried physical responses may block other physical responses.

* A bus reset shall prevent retries for any packet first attempted prior to that bus reset

Copyright © 1996-2000 All rights reserved. Page 37

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5.5 Autonomous CSR Resources

The 1394 Open HCI implements a number of autonomous CSR resources. In particular the 1394 compare-swap bus
management registers are implemented in hardware, as is the config ROM header, the bus_info_block and access to the
first 1K bytes of the configuration ROM. The DMA units handle external 1394 bus requests to these resources automati-
cally, and the following registers manage this function for the local host

5.5.1 Bus Management CSR Registers

1394 requires certain 1394 bus management resource registers be accessible only via "quadlet read” and “quadlet lock"
(compare-and-swap) transactions. For other transaction types, ack_type_error shall be sent. These special bus manage-
ment resource registers are implemented internal to the 1394 Open Host Controller to allow atomic compare-and-swap
access from either the host system or from the 1394 bus. The Host Controller shall implement the algorithms described in
IEEE1394a clause 10.30.

Table 5-4 — Serial Bus Registers

hardware reset,
1394-1995 soft reset, or

CSR address csrSel description Section # bus reset
48'hFFFF_F000_021C 2'h0 BUS_MANAGER_ID 8.3.2.3.6 6'h3F
48'hFFFF_F000_0220 2'hl BANDWIDTH_AVAILABLE 8.3.2.3.7 InitialBand-

widthAvailable
(section 5.8)

48'hFFFF_F000_0224 2’h2 CHANNELS_AVAILABLE_HI 8.3.2.3.8 InitialChannelt
sAvailableHi
(section 5.8)

48'hFFFF_F000_0228 2’h3 CHANNELS_AVAILABLE_LO 8.3.2.3.8 InitialChannel-
sAvailableLo

(section 5.8)

When these bus management resource registers are accessed from the 1394 bus, the atomic compare-and-swap transaction
shall be autonomous, without software intervention. If ack_complete is not received to end the transaction for the gener-
ated lock response, IntEvelockRespErr(table 6-1) shall be triggered.

To access these bus management resource registers from the host, the following registers are used.

Open HCI Offset 11’'h00C

31 30 29 28; 27 26 25 24‘23 22 21 20119 18 17 16‘15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O

Figure 5-4 — CSR data register

Page 38 Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Open HCI Offset 11'h010

31 30 29 28, 27 26 25 24‘23 22 21 20119 18 17 16‘15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O

Figure 5-5 — CSR compare register

Open HCI Offset 11'h014

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16|15 14 13 12;11 10 9 8|7 6 5 4;3 2 1 0

csrSel

1
csrDone

Figure 5-6 — CSR control register

Table 5-5 — CSR registers’ fields

field name rwu | reset | description

csrData rwu| undef At start of operation, the data to be stored if the compare is successfu

csrCompare rw | undef The data to be compared with the existing value of the CSR resourcel.

csrDone ru | 1’'bl| This bit shall be set when a compare-swap operation is completed. It $hall be
cleared whenever this register is written.

csrSel rw | undef This field selects the CSR resource:

2’h0 - BUS_MANAGER_ID

2'hl - BANDWIDTH_AVAILABLE
2'h2 - CHANNELS_AVAILABLE_HI
2'h3 - CHANNELS_AVAILABLE_LO

To access these bus management resource registers from the host bus, first load the CSRData register with the new d
value to be loaded into the appropriate resource. Then load the CSRCompare register with the expected value. Finall
write the CSRControl register with the selector value of the resource. A write to the CSRControl register initiates a
compare-and-swap operation on the selected resource. When the compare-and-swap operation is complete, tl
CSRControl register csrDone bit shall be set, and the CSRData register shall contain the value of the selected resour
prior to the host initiated compare-and-swap operation.

5.5.2 Config ROM header

The config ROM header register is a 32-bit number that externally maps to the 1st quadlet of the 1394 configuration ROM
(offset 48’hFFFF_F000_0400). This register is written locally at Open HCI offset 11’h018, and the field names match the
IEEE 1394 names.

Copyright © 1996-2000 All rights reserved. Page 39

1394 Open HCI Registers

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

Software shall ensure this register is valid whenever HCCadimikitnableis set. The Open HCI shall reload this register
with updated data when ConfigROMmap changes value and HCCbnkidhableis set as discussed in section 5.5.6.

Open HCI Offset 11'h018

31 30 29 28) 27 26 25 24

23 22 21 20119 18 17 16

15 14 13 12;11 10 9 8 ‘7 6 5 4,3 2 1 0

T T T
info_length

[
crc_length

T T T
rom_crc_value

Figure 5-7 — Config ROM header register

Table 5-6 — Config ROM header register fields

hard |soft
field name rwu |reset |reset | description
info_length rwu| 8h0 N/A | IEEE 1394 bus management field.
crc_length rwul 8’h0 N/A | IEEE 1394 bus management field.
rom_crc_value rwy 16’h0 N/A| IEEE 1394 bus management field.

For a clarification of the meaning of Config ROM versus GUID ROM versus PCI Expansion ROM, see section 2.2.

5.5.3 Bus identification register

The bus identification register is a 32-bit number that externally maps to the first quadlet of the Bus_Info_Block. This
register is read locally at the following register:

Open HCI Offset 11'h01C

31 30 29 28 27 26 25 24‘23 22 21 20,19 18 17 16‘15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0

Figure 5-8 — Bus ID register

Table 5-7 — Bus ID register fields

field name rwu

reset

description

busID r

N/A

Contains the constant 32'h31333934, which is the ASCII value for “1394".

5.5.4 Bus options register

The bus options register is a 32-bit number that externally maps to the 2nd quadlet of the Bus_Info_Block. This register
is written locally at Open HCI offset 11'h020, and the field names match the IEEE 1394 names.

Page 40

Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Software shall ensure this register is valid whenever HCCadimkiinableis set. The Open HCI shall reload this register
with updated data when ConfigROMmap changes value and HCCtnkibhableis set as discussed in section 5.5.6.

Open HCI Offset 11'h020

31 30 29 28, 27 26 25 2423 22 21 20;19 18 17 16/15 14 13 12;11 10 9 8|7 6 5 4,3 2 1 0
For I

max_rec link_spd

Figure 5-9 — Bus options register

Table 5-8 — Bus options register fields

field name rwu | reset | description

max_rec rw | ** IEEE 1394 bus management field. Hardware shall initialize max_rec to|the
maximum value supported by the implementation which shall be 512 of
greater. Software may change max_rec, however this field shall be valid jat any
time the HCControlinkEnablebit is set to 1.

Block write request packets received by the AR DMA with a length gregter
than max_rec shall not be accepted. If appropriate, ack_type_error shafl be
returned for such packets. As an example, it is inappropriate to give an
acknowledgment to a broadcast packet.

** Reset values: For a hardware reset, max_rec is set to the maximum palue
supported by the implementation, 512 or greater. For a soft reaetreds
not changed.

link_spd rwu | ** Link speed.
or **On a hardware reset, link_spd is set by the Host Controller to the maximum
ru speed the link can send and receive. The Host Controller shall supportjthe

maximum size asynchronous and isochronous packets for the reported|speed.
If implemented as read/write, software may change link_spd to a lower Yalue,
which shall cause the link to ignore packets arriving at higher speeds.
Link_spd may also be implemented as read-only.

**On a soft reset, the value of link_spd is undefined.
bits 3-11 and 16-31 rw| undef These read-writable bits are used by software and provide no additional

hardware functionality. Refer to IEEE1394 standards for definitions of these
bits.

Copyright © 1996-2000 All rights reserved. Page 41

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5.5.5 Global Unique ID

The global unique ID (GUID) is a 64-bit number that externally maps to the third and fourth quadlets of the
Bus_Info_Block. These registers are written locally at the following registers (the field names match the IEEE 1394
names):

Open HCI Offset 11'h024

31 30 29 28 27 26 25 24‘23 22 21 20,19 18 17 16‘15 14 13 12911 10 9 8|7 6 5 4,3 2 1 0
rrrrr-rr - r-rrr-r T T T T T T T T T

node_vendor_ID

Figure 5-10 — GlobalUniquelDHi register

Open HCI Offset 11'h028

14 13 12911 10 9 8|7 6 5 4,3 2 1 O
T

31 30 29 28, 27 26 25 24‘ 23 22 21 20,19 18 17 16‘ 15
I |

I B B
chip_ID_lo

Figure 5-11 — GlobalUniquelDLo register

Table 5-9 — GlobalUniquelD register fields

field name rwu | reset description
node_vendor_ID, rw | **see IEEE 1394 bus management fields. Firmware or hardware shall ensufe this
chip_ID_hi, chip_ID_lo comments register is valid whenever HCContilolkEnablebit is set.

**The Global Unique ID (GUID) Registers are reset to 0 after a host power (hardware) reset. A value of 0 is an illegal
value. These registers are not affected by a soft reset. These GUID registers shall be written only once after host power
reset, by either

1) an autonomous load operation from a loaakmodifiable resource (i.e., local GUID ROM or local parallel
ROM) performed by the 1394 OHCI hardware, or
2) asingle host write to each register perforroaty by firmware that is always executed on a hardware reset

which affects the Host Controller.

After one of these load mechanisms has executed, the GUID registeeaduenly.
5.5.6 Configuration ROM mapping register

The configuration ROM mapping register contains the start address within host bus space that is mapped to the start
address of the 1394 configuration ROM for this node. Since the low order 10 bits of this address are reserved and assumed
to be zero, the system address for the config ROM shall start on a 1K byte boundary. The first five quadlets of the 1394
config ROM space are mapped to the config ROM header and the bus_info_block, and quadlet accesses are handled
directly by the 1394 Open Host Controller returning data directly from the hardware registers described in sections 5.5.2,
5.5.3,5.5.4 and 5.5.5.

By default, the Open HCI shall respond to quadlet read requests within the 1K configuration ROM, and send
ack_type_error to any block read requests. When enabled via HCOBHBiwmlageValid the Open HCI shall respond to

block read requests to the configuration ROM utilizing the physical response unit. The ability to handle block config
ROM read requests can increase 1394 and host bus efficiency.

Page 42 Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

The Open HCI shall obtain response data to quadlet read accesses to the bus_info_block from registers implemented
Open HCI hardware (section 5.5.5). However, response data for all block read requests, including those that contain an
portion of the bus_info_block, shall be acquired from host host bus space when HCBtBitrzgeValidis set. Before

Open HCI software sets HCContmIBimageValidit shall ensure that the first five quadlets of host configuration ROM

are valid in the host bus space mapped by the ConfigROMmap register.

Designers of 1394 devices that read the configuration ROM of an Open HCI node are advised that only quadlet reads t
the GUID registers are guaranteed to be accurate and invariant. Block read responses which include part or all of th
GUID registers may have been generated by software, and so may contain incorrect data by means of malicious or fault
software.

Software shall ensure that the ConfigROMmap register is valid whenever HCOmiiEslableto one.

When HCControlinkEnableand HCControBIBimageValidare set, the host controller provides a mechanism for atomic
update of the configuration ROM through a unique access scheme involving a shadow register. The shadow registel
ConfigROMmapNext, contains the next value to load to the ConfigROMmap register. Host writes to the ConfigROMmap
OHCI register address update the ConfigROMmapNext register, and host reads from that address always return the valt
of the configROM mapping start address used by the host controller. The ConfigROMmapNext value shall be copied to
ConfigROMmap when either HCContriihkEnableis zero or after a bus reset event on the 1394 serial bus.

To provide the atomic update of the host configuration ROM, both the ConfigROMheader and BusOptions registers
(sections 5.5.2 and 5.5.4) shall be reloaded with updated values by Open HCI accesses to the host bus space. These re
ters are reloaded following a 1394 bus reset when HCCdmké&nableis set and ConfigROMmapNext register has been
written since the last bus reset. If an error occurs when loading these registers from host memory, the Open HCI sha
clear HCControBIBimageValid,set IntEvenunrecoverableErrorand shall inhibit responses to all read requests to the
first 1K of host configuration ROM including the bus_info_block registers until a soft reset occurs.

After a bus reset initiates an update of ConfigROMheader and BusOptions registers, the Open HCI shall respond to 139
config ROM accesses to these registers with the updated data mapped by the new ConfigROMmap address, and the Op
HCI functionality based upon BusOptions fields shall be properly updated.

The procedure given below summarizes both the Open HCI hardware and software steps in updating host configuratio
ROM atomically. This procedure is only valid if HCContBiBimageValidis set.

a) Software prepares the new config ROM, including the first five quadlets which contain the updated configROM
header and Bus Options quadlets. Software shall ensure that the bus_info_block is built correctly with data
acquired from Open HCI registers.

b) Software writes ConfigROMmap with new configuration ROM start address. Hardware stores this value only in
ConfigROMmapNext.

c) Software forces a 1394 bus reset.

d) When the 1394 bus reset occurs, Open HCI updates ConfigROMmap after it completes all current host bus
accesses that use the old ConfigROMmap value.

e) Open HCI updates ConfigROMheader and BusOptions by accessing the host bus at the updated ConfigROMma,
address.

Copyright © 1996-2000 All rights reserved. Page 43

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Open HCI Offset 11'h034

31 30 29 28, 27 26 25 24‘23 22 21 20119 18 17 16‘15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O
T

configROMaddr

Figure 5-12 — Configuration ROM mapping register

Table 5-10 — Configuration ROM mapping register fields

field name rwu | reset | description

configROMaddr rw | undef If a quadlet read request to 1394 offset 48’hFFFF_F000_ 0400 through offset
48’'FFFF_F000_O7FF is received, then the low order 10 bits of the offsdt are
added to this register to determine the host memory address of the retyrned
quadlet.

5.6 Vendor ID register
The vendor ID register holds the company ID of an organization that specified any vendor-unique registers.

Open HCI Offset 11'h040

31 30 29 28,27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0
-t T

vendorUnique vendorCompanyID

Figure 5-13 — VendorID register

Table 5-11 — VendorID register fields

field name rwu |reset | description

vendorCompanylD r N/A | The company ID of the organization that specified the particular set of yendor
unique registers and behaviors of this particular implementation of the 1394
Open HCI. If no additional features are implemented, this field shall be 24’h0.

vendorUnique r N/A | Vendor defined.

To obtain a company ID (also known as an Organizationally Unique Identifier, OUI), contact:

Registration Authority Committee

The Institute of Electrical and Electronic Engineers, Inc.
445 Hoes Lane

Piscataway, NJ 08855-1331

USA

(908) 562-3812

Your company need not obtain a company ID if it has been previously assigned a#8#BEElobally Assigned Address
Block or an IEEE-assigne@rganizationally Unique Identifier (OUljor use in network applications. However, be aware
that the (left through right) order of the bits within the company ID value is not the same as the (first through last)
network-transmission order of the bits within these other identifiers. Consult the IEEE Registration Authority for clari-
fying documentation.

Page 44 Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5.7 HCControl registers (set and clear)

This register provides flags for controlling the Host Controller. There are two addresses for this register: HCControlSet
and HCControlClear. On read, both addresses return the contents of the control register. For writes, the two address
have different behavior: a one bit written to HCControlSet causes the corresponding bit in the HCControl register to be
set, while a zero bit leaves the corresponding bit in the HCControl register unaffected. On the other hand, a one bit writtel
to HCControlClear causes the corresponding bit in the HCControl register to be cleared, while a zero bit leaves the corre
sponding bit in the HCControl register unaffected.

Open HCI Offset 11’h050 - Set
Open HCI Offset 11'h054 - Clear

31 30 29 28,27 26 25 24|23 22 21 20,19 18 17 16{15 14 13 12y11 10 9 8 /7 6 5 4,3 2 1 O

T T
BlBimageValid | | softReset
noByteSwapData LPS linkEnable
ackTardyEnable postedWriteEnable
aPhyEnhanceEnable
programPhyEnable
Figure 5-14 — HCControl register
Table 5-12 — HCControl register fields

field name rscu| reset | description
BIBimageValid rsu | 1'b0 | This bit is used to enable both Open HCI response to block read requgsts to

host configuration ROM and the Open HCI mechanism for atomically
updating configuration ROM. Software shall create a valid image of the
bus_info_block in host configuration ROM memory before setting this b

When this bit is zero, the Open HCI shall return ack_type_error on blocK read
requests to configuration ROM and shall neither update the configROMmap
register nor update ConfigROMheader and BusOptions registers when @& 1394
bus reset occurs.

When this bit is set, the physical response unit handles block reads of host
configuration ROM and the mechanism for atomically updating configuration
ROM is enabled. Details of these enhancements are given in section 5/5.6.

Software may only set this bit when HCContinkEnableis zero. Once sef,
this bit is cleared by a hardware reset, a soft reset, or if a fetch error odcurs
when the Open HCI loads bus_info_block registers from host memory as
described in section 5.5.6.

noByteSwapData rsc| undef This bitis used to control byte swapping during host bus accesses on the data
portion of a 1394 packet. When 0, data quadlets are sent/received in litfle
endian order. When 1, data quadlets are sent/received in big endian orgler.

See the explanation following this table. Software may only change thiq bit
when HCControlinkEnableis 0, otherwise unspecified behavior will resylt.
Support of this bit is optional for motherboard implementations and reqpired
for all other implementations.

See section 5.7.1 below for more information.

—

Copyright © 1996-2000 All rights reserved. Page 45

1394 Open HCI Registers

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

Table 5-12 — HCControl register fields

field name

rscu| reset

description

ackTardyEnable

rsc| 1'b0

This bit is used to control the acknowledgment of ack_tardy. When th

s bitis

set to one, ack_tardy may be returned as an acknowledgment to configliration

ROM accesses from 1394 to the Open HCI including accesses to the
bus_info_block. The Host Controller shall return ack_tardy to all other
asynchronous packets addressed to the Open HCI node. When the Ho
Controller sends ack_tardy, IntEveadk_tardyis set to indicate the attempt
asynchronous access. Refer to IEEE1394a for more information on ack

Software shall not set this bit if the Host HCI node is the 1394 bus man

Refer to Annex A., “PClI Interface (optional),”section A.4, for a discussio
how ack_tardy relates to PCl Power Management. If the D1 power state
implemented this bit is reserved.

5t

pd

| tardy.
pger.
N on

is not

programPhyEnable

or

This bit informs upper-level generic software (e.g., an OS OHCI device d
if lower-level implementation specific software (e.g., BIOS or Open
Firmware) has consistently configured IEEE1394a enhancements in thd
and PHY.

When 1 and while linkEnable is 0, generic software is responsible for
configuring the IEEE1394a enhancements within the PHY and the
aPhyEnhanceEnable bit within the Host Controller Link in a consistent
manner.

When 0, generic software may not modify the IEEE1394a enhancemen
configuration in either the Link or PHY and cannot interpret the setting
aPhyEnhanceEnable

iver)

b Link

t
Df

*On a hardware reset, this bit should be 1 for Host Controllers that can slipport

the enabling of all IEEE1394a PHY enhancements by generic software
may be 0 for Host Controllers which are always configured by lower-lev
software.

A soft reset and a bus reset shall not affect this bit.
See section 5.7.2 below for more information.

and
el

aPhyEnhanceEnable

rsg**
or

When the programPhyEnable bit is 1, this bit is used by generic,
implementation independent software (e.g., OHCI device driver) to enab
Host Controller Link to use atif IEEE1394a enhancements. Generic softw
can only modify this bit when the programPhyEnable bit is 1 and the
linkEnable bit is 0. This bit is meaningless to software when the
programPhyEnable bit is 0.

When 0, none of the IEEE1394a enhancements are enabled within the
When 1, the set of all IEEE1394a enhancements is enabled within the

**On a hardware reset, this bit should be 0 for Host Controllers which
initialize without all of the IEEE1394a PHY enhancements enabled, and
those which initialize with all IEEE1394a PHY enhancements enabled.

A soft reset and a bus reset shall not affect this bit.
See section 5.7.2 below for more information.

le the
are

Link.
| ink.

1 for

LPS

rsu | 1'b0

This bit is used to control the Link Power Status. Software must set LH

to permit Link<— PHY communication. Once set, the link can use LRE(
perform PHY reads and writes.
An LPS value of 0 prevents Link> PHY communication. In this state,
only accessible Host Controller registers are Version, VendorID, HCCop
GUID_ROM, GUIDHi and GUIDLo. Access to other registers is not defi

Hardware and soft resets clear LPS to 0. Software shall not clear LPS.

See section 5.7.3 below for more information.

Stol
s to

he
trol,
ed.

Page 46

Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 5-12 — HCControl register fields

field name rscu| reset | description

postedWriteEnable rsq undef This bitis used to enable (1) or disable (0) physical posted writes. WWhen
disabled (0) physical writes shall be handled but shall not be posted and
instead are ack’ed with ack_pending.

Software may only change this bit when HCConlirddEnableis 0, otherwise
unspecified behavior will result. See Section 12., “Physical Requests,” for
information about posted writes.

linkEnable rsu| 1'b0| Software shall set this bitto 1 when the system is ready to begin operation and
then force a bus reset.

When this bit is clear the Host Controller is logically and immediately
disconnected from the 1394 bus. The link shall not process or interpretfany
packets received from the PHY, nor shall the link generate any 1394 bus
requests. However, the link may access PHY registers via the PHY conftrol
register.
This bit is cleared to 0 by a hardware reset or soft reset, and shall not be ¢leared
by software. Software shall not set the linkEnable bit until the Configurgtion
ROM mapping register (section 5.5.6) is valid.

See section 5.7.3 below for more information.

softReset rsul *** | When set to 1, a soft reset occurs, all FIFO's are flushed and all Host
Controller registers are set to their hardware reset values unless otherwise
specified. Registers outside of the Open HCI realm, i.e., host attachmept
registers such as those for PCI, are not affected.

***The read value of this bit shall be 1 while a soft reset or a hard reset|is in
progress. The read value of this bit shall be 0 when neither a soft reset npr hard
reset are in progress. Software can use the value of this bit to determing¢ when
a reset has completed and the Host Controller is safe to operate. T

5.7.1 noByteSwapData

The 1394 bus is quadlet based big endian. By convention, when quadlets are sent in big endian order, the leftmost by
(bits 31-24) of a quadlet is sent first. When sent in little endian order, the right most byte (bits 7-0) shall be séht first w
the leftmost bit of each byte sent first.

When the Host Controller sends/receives a packet, the header information shall be sent/received in big endian order (lef
most byte first). Header information is composed of a sequence of quadlets which is invariant over big and little endian
systems.

When the HCContrahoByteSwapDat#it is not set, data quadlets shall be sent/received in little endian order and when
HCControlnoByteSwapDatas set, data quadlets shall be sent/received in big endian order. The data quadlets that are
subject to swap are:

1) any data quadlet covered by data CRC (tcodes 4'h1, 4'h7, 4'h9, 4'hA an 4'hB)
2) the data quadlet in a quadlet write request (tcode 4'h0)
3) the data quadlet in a quadlet read response (tcode 4'h6)

Since the cycle_time is self contained within the Host Controller, it shall not be byte-swapped regardless of the setting of
the noByteSwapData bit.

The data in a PHY packet (identified internally with tcode 4'hE) shall not be byte swapped for send or receive.

Copyright © 1996-2000 All rights reserved. Page 47

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5.7.2 programPhyEnable and aPhyEnhanceEnable

After a hardware or soft reset, system software shall ensure that the PHY and the Link are set to a consistent, compatible
set of IEEE1394a enhancements. The programPhyEnable and aPhyEnhanceEnable bits are provided to enable software to
accomplish this task.

Since different levels of software may be responsible for ensuring this setup, the programPhyEnable bit is defined to
support communication between implementation specific lower-level software (e.g., BIOS or Open Firmware) and
generic, implementation independent upper-level software (e.g., OHCI device driver). If generic software reads this bit as
a 1, it shall configure the IEEE1394a enhancements in both the Link and PHY in a consistent manner (either all
enhancements enabled or all enhancements disabled). A 0 value for this bit informs the upper-level system software that
no further changes to the IEEE1394a configurations of the Link and PHY are permitted, since either: 1) lower-level
software has previously performed initialization appropriate to the Host Controller capabilities, or 2) the link has
hardwired IEEE1394a capabilities to match the PHY with which it is being used. Note that this bit is only a software flag
and does not control any Host Controller functionality.

The programPhyEnable bit may be read-only, returning a zero value, if upper-level software will not be involved in the
configuration of IEEE1394a enhancements for the Link and PHY. This is appropriate when the Link and PHY are hard-
wired with compatible settings or when lower-level software will consistently configure both the Link and PHY. If generic
software control of IEEE1394a enhancements is to be supported, programPhyEnable shall be implemented as read/clear
with a hardware reset value of 1. Software should clear programPhyEnable once the PHY and Link have been
programmed consistently.

When programPhyEnable is set to 1, then the aPhyEnhanceEnable bit allows generic software to enable or disable all
IEEE1394a enhancements within the Host Controller Link. A value of 1 for aPhyEnhanceEnable configures the Link to
use all IEEE1394a enhancements and is appropriate when software has enabled all of the enhancements within the PHY.
Likewise, a value of O prevents the Link from using any IEEE1394a enhancements and is appropriate when software has
disabled all of the enhancements within the PHY. Generic software shall not attempt to modify or interpret the setting of
the aPhyEnhanceEnable bit if programPhyEnable contains a 0.

The aPhyEnhanceEnable bit may be read-only or read/set/clear depending on options implemented in the hardware. If the
aPhyEnhanceEnable bit is read/set/clear, it shall hardware reset to 0 for default compatibility with legacy PHYs. If the
aPhyEnhanceEnable bit is read-only, it shall hardware reset to O if it only operates with legacy PHYs or shall hardware
reset to 1 if it only operates with IEEE1394a PHYs. In either case, the upper-level software will be responsible for
programming the PHY consistently (provided programPhyEnable is set).

The following table illustrates the responsibility of generic software for some example Link implementations.

Table 5-13 — programPhyEnable and aPhyEnhanceEnable Examples

Link Capabilities | programPhyEnable | aPhyEnhanceEnable comments
Legacy-only Link 0 (read-only) X(meaningless) Generic software shall not change PHY of Link
enhancement configuration.
0 (read/clear) X (meaningless) Generic software shall not change PHY o1l Link
IEEE1394a-only Link enhancement configuration.
1 (read/clear) 1 (read-only) Generic software shall enable IEEE1394a
enhancements in the PHY.
0 (read/clear) X (meaningless) Generic software shall not change PHY o] Link
enhancement configuration.
IEEEl?’L?r?E capablg 1 (read/clear) 0 (read/set/clear) Generic software may modify

=

aPhyEnhanceEnable and shall configure PH

1 (read/clear) 1 (read/set/clear) consistently.

Page 48 Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

In all cases, the PHY-Link enhancements shall be programmed only when HCQinkEnhbleis 0.

5.7.3 LPS and linkEnable

Three basic tasks with respect to the PHY/Link interface include:

+ Bootstrap of Open HCI.

Configure the link and the PHY prior to receiving any packets or generating any bus requests.
« Recovery from a hung system.

Place Open HCI in a near pre-bootstrap condition, and allows the PHY and link to get back into sync if required.
» Power Management via Suspend/Resume

Inform the PHY that PHY/Link communication is no longer required and, if possible, the PHY can suspend itself if
no active ports remain.

To achieve proper behavior, software shall assert the signals in the following sequence: LPS, then linkEnable, then an
other individual context enables or runs. The Host Controller behavior when violating this order is undefined and can
produce unreliable behavior. The table below illustrates the progressive functionality as these signals are asserted.

Table 5-14 — LPS and linkEnable assertion

LPS linkEnable contextControl.run Sequence Comments

a. Off Off Off Initial State

b. On Off Off Allows SCLK to start

C. On Off Off Config PHY/Link registers

d. On On Off Initiate Bus Reset

e. On On Off Physical DMA/Cycle Starts Okay
f. On On On Normal Operation

Following a hardware or soft reset, LPS and linkEnable are Off as shown ia. Seftware proceeds to enable the link
power statusk) and when SCLK has started, software may configure PHY and Link registers as listed ¢n(estpp
Self-ID receive DMA registers). Setting linkEnable in stdpenables some DMA functionality, and asserting
contextControkun (e€) for the Host Controller contexts then yields full functionality.

Copyright © 1996-2000 All rights reserved. Page 49

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5.8 Bus Management CSR Initialization Registers

These registers shall be reset to their default value on a hardware or soft reset, and shall not be affected by a 1394 bus
reset. The values of these registers shall be loaded into their corresponding bus management CSR registers upon a
hardware reset, soft reset, or a 1394 bus reset.

Open HCI Offset 11'h0OBO

31 30 29 28,27 26 25 24/23 22 21 20,19 18 17 16/15 14 13 12;11 10 9 8 ‘7 6 5 4,3 2 1 0
T

InitialBandwidthAvailable

Figure 5-15 — Initial Bandwidth Available register

Open HCI Offset 11'h0B4

31 30 29 28 27 26 25 24‘23 22 21 20,19 18 17 16‘15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0
e rrrrrrrrrrrrrr Tt T T T T T T T T [T 1

InitialChannelsAvailableHi

Figure 5-16 — Initial Channels Available Hi register

Open HCI Offset 11'h0B8

31 30 29 28 27 26 25 24‘23 22 21 20,19 18 17 16‘15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0
e rrrrrrrrrrrrrr Tt T T T T T T T T [T 1

InitialChannelsAvailableLo

Figure 5-17 — Initial Channels Available Lo register

Table 5-15 — Bus Management CSR Initialization registers’ fields

field name rw |reset description
InitialBandwidthAvail- rw | 13'h1333 (‘d4915) | This field is reset to 13'h1333 on a hardware or soft resef, and
able shall not be affected by a 1394 bus reset. The value of this|field

shall be loaded into the BANDWIDTH_AVAILABLE CSR
upon a hardware reset, soft reset, or a 1394 bus reset.

InitialChannelsAvail- rw | 32’hFFFF_FFFF This field is reset to 32’hFFFF_FFFF on a hardware or spft
ableHi reset, and shall not be affected by a 1394 bus reset. The vglue of
this field shall be loaded into the CHANNELS_AVAILABLE[|
HI CSR upon a hardware reset, soft reset, or a 1394 bus feset.

InitialChannelsAvail- rw | 32’hFFFF_FFFF This field is reset to 32’hFFFF_FFFF on a hardware or spft
ableLo reset, and shall not be affected by a 1394 bus reset. The vglue of
this field shall be loaded into the CHANNELS_AVAILABLE|
LO CSR upon a hardware reset, soft reset, or a 1394 busjreset.

Page 50 Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5.9 FairnessControl register (optional)

This register provides a mechanism by which software can direct the Host Controller to transmit multiple asynchronous
request packets during a fairness interval as specified in IEEE1394a.

Open HCI Offset 11’h0ODC

31 30 29 28,27 26 25 24/23 22 21 20,19 18 17 16/15 14 13 12911 10 9 8 |7 6 5 4,3 2 1 O

T
pri_req
I N O |
Figure 5-18 — FairnessControl register
Table 5-16 — FairnessControl register fields
soft&
hard |bus-

field name rw |reset |reset | description
pri_req rw | undeff N/A | This field specifies the maximum number of priority arbitration requestg for

asynchronous request packets that the link is permitted to make of the PHY
during a fairness interval. gri_reqvalue of 8'h0 is equivalent to the behav|or
specified by IEEE 1394-1995.

The number of implemented bits is variable as per the IEEE1394a spegifica-
tion. Unimplemented bits shall be read-only and shall read as 0’s.

The FairnessControl register is configured by software in conjunction with software support of the Fairness Budget
Register specified in IEEE1394a. Transmission of all asynchronous packets via the Asynchronous Transmit Reques
context shall be governed by the fairness protocol supported by the Host Controller.

5.10 LinkControl registers (set and clear)

This register provides the control flags that enable and configure the link core protocol portions of the 1394 Open HCI. It
contains controls for the receiver, and cycle timer. There are two addresses for this register: LinkControlSet and LinkCon:
trolClear. On read, both addresses return the contents of the control register. For writes, the two addresses have differe
behavior: a one bit written to LinkControlSet causes the corresponding bit in the LinkControl register to be set, while a
zero bit leaves the corresponding bit in the LinkControl register unaffected. On the other hand, a one bit written to Link-
ControlClear causes the corresponding bit in the LinkControl register to be cleared, while a zero bit leaves the corre-
sponding bit in the LinkControl register unaffected.

Open HCI Offset 11’hOEO - Set
Open HCI Offset 11’'hOE4 - Clear

31 30 29 28, 27 26 25 24{23 22 21 20;19 18 17 16/15 14 13 121110 9 8|7 6 5 4,3 2 1 O

1 I I
| cycleTimerEnable rcvPhyPkt taglSyncFilterLock
cycleMaster rcvSelfID
cycleSource

Figure 5-19 — LinkControl register

Copyright © 1996-2000 All rights reserved. Page 51

1394 Open HCI Registers

1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 5-17 — LinkControl register fields

field name

rscu| reset | description

cycleSource

rsc|* Optional. When one, the cycle timer shall use an external source to detgrmine
or when to increment cycleCount. When cycleCount is incremented, cycleDffset
r is reset to 0. If cycleOffset reaches 3071 before an external event occufs, it

shall remain at 3071 until the external signal is received and is then resgt to 0.
When the cycleSource bit is zero, the 1394 Open HCI rolls the cycle timey over
when the timer reaches 3072 cycles of the 24.576 MHz clock (i.e., 8 kHz).

If not implemented, this bit shall read as 0.

* A hardware reset clears this bit to 0. A soft reset has no effect.

cycleMaster

rscy undef When one and the PHY has notified the 1394 Open HCI thatit is root, the 1394
Open HCI shall generate a cycle start packet every time the cycle timef rolls
over, based on the setting of the cycleSource bit. When either this bit i zero
or the Open HCI node is not the root, the 1394 Open HCI shall accept regeived
cycle start packets to maintain synchronization with the node which is sending
them. This bit shall be zero when the IntEveytleTooLongit is set.

cycleTimerEnable

rsc| undef When one, the cycle timer offset shall count cycles of 49.152MHz / 2| When
zero, the cycle timer offset shall not count.

rcvPhyPkt

rsc | undef When one, the receiver shall accept incoming PHY packets into the AR
request context if the AR request context is enabled. Thisrddaesntrol
either the receipt of self-identification packets during the Self-ID phase qf bus

initialization or the queuing of synthesized bus reset packets in the AR PMA

Request Context buffer (section 8.4.2.3). This does control receipt of any self-
identification packets received outside of the Self-ID phase of bus
initialization.

rcvSelfID

rsc | undef When one, the receiver will accept incoming self-identification packets.
Before setting this bit to one, software shall ensure that the self ID buffer
pointer register contains a valid address.

taglSyncFilterLock

rs | ** When one, ContextMatizlgl SyncFilterequals one for all IR contexts. When
zero, ContextMatckaglSyncFiltethas read/write access.

** A hardware reset clears this bit to 0. A soft reset has no effect.

Page 52

Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5.11 Node identification and status register

This register contains the CSR address for the node on which this chip resides. The 16-bit combination of busNumber an
nodeNumber is referred to as the Node ID.

Open HCI Offset 11’'hOE8

31 30 29 28) 27 26 25 24/ 23 22 21 2019 18 17 16|15 14 13 12,11 10 9 8‘7 6 5 4,3 2 1 0
T L

busNumber nodeNumber
I T T T T T A
I
root
iDValid
CPS
Figure 5-20 — Node ID register
Table 5-18 — Node ID register fields
field name rwu | reset description
iDValid ru |1'b0 This bit indicates whether or not the 1394 Open HCI has a valid node nymber.
It shall be cleared when a bus reset is detected and shall be set when tihe 1394
Open HCI receives a new node number from the PHY.
root ru | 1'b0 This bit is set during the bus reset process if the attached PHY is root.
CPS ru | 1'b0 Set if the PHY is reporting that cable power status is OK .
busNumber rwd 10’h3FF This number is used to identify the specific 1394 bus this node belongs to

when multiple 1394-compatible busses are connected via a bridge. This field
shall be set to 10'’h3FF on a bus reset.

nodeNumber ru | undef This number is the physical node number established by the PHY duifing self-
identification. It shall be set to the value received from the PHY after thq self-
identification phase. If the PHY sets the nodeNumber to 63, software shall not
set ContextContralun for either of the AT DMA contexts. The Host
Controller shall not acknowledge any packet received with a destinatior
nodeNumber of 63 regardless of the setting of this field.

This register shall be written autonomously and atomically by the Host Controller with the value in PHY register O
following the self-identification phase of bus initialization. Although IntEy@EntRegRcvdhall not be set when the
contents of PHY register O are written here, software may use the Ingal#DICompletdnterrupt to detect that the self-
identification phase has completed, and then check for a new valid Node ID.

Copyright © 1996-2000 All rights reserved. Page 53

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5.12 PHY control register

The PHY control register is used to read or write a PHY register. To read a register, the address of the register shall be
written to the regAddr field along with a 1 in the rdReg bit. When the read request has been sent to the PHY (through the
LReq pin), the rdReg bit is cleared to 0. When the PHY returns the register (through a status transfer), the rdDone bit
transitions to one and then the IntEvphyRegRcvdnterrupt is set. The address of the register received is placed in the
rdAddr field and the contents in the rdData field.

Software shall not issue a read of PHY register 0. The most recently available contents of this register shall be reflected

in the NodelD register (section 5.11). The Host Controller shall only write the contents of PHY register O into the nodelD
register, and never into this register.

To write to a PHY register, the address of the register shall be written to the regAddr field, the value to write shall be
written to the wrData field, and a 1 shall be written to the wrReg bit. The wrReg bit shall be cleared when the write
request has been transferred to the PHY.

Software should assure that no more than one PHY register request is outstanding.

Open HCI Offset 11'hOEC

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4;3 2 1 0
T 1 N I B B B T 1 N I B B B
rdAddr rdData regAddr wrData
L I O O L I O O

]]

rdDone wrReg

rdReg

Figure 5-21 — PHY control register

Table 5-19 — PHY control register fields

field name rwu |reset | description

rdDone ru | undef rdDone is cleared to O by the Host Controller when either rdReg or wrReg is
setto 1. This bit is set to 1 when a register transfer (transfers other than PHY
register 0) is received from the PHY and rdData is updated.

rdAddr ru | undef| This is the address of the register most recently received from the PHY.

rdData ru | undef Contains the data read from the PHY register at rdAddr.

rdReg rwu| 1'b0 | SetrdReg to initiate a read request to a PHY register. This bit is clearefl when
the read request has been sent. The wrReg bit shall not be set while theé rdReg
bit is set.

wrReg rwu| 1'b0 | SetwrReg to initiate a write request to a PHY register. This bit is cleared when
the write request has been sent. The rdReg bit shall not be set while the|wrReg
bit is set.

regAddr rw | undefi regAddr is the address of the PHY register to be written or read.

wrData rw | undefi This is the contents to be written to a PHY register. Ignored for a read

This register shall be written atomically such that all bits are accumulated and written together when rdDone is set

To ensure a consistent interface regardless of the PHY/Link implementation, the register map of IEEE1394a PHYs shall
be supported.

Page 54 Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5.13 Isochronous Cycle Timer Register

The isochronous cycle timer register is a read/write register that shows the current cycle number and offset. The cycl
timer register is split up into three fields. The lower order 12 bits are the cycle offset, the middle 13 bits are the cycle
count, and the upper order 7 bits count time in seconds. When the 1394 Open HCI is cycle master, this register shall b
transmitted in the cycle start packet. When the 1394 Open HCI is not cycle master, this register shall be loaded with the
data field in each incoming cycle start. In the event that the cycle start packet is not received, the fields continue
incrementing (when cycleTimerEnable is set in the LinkControl register) to maintain a local time reference.

Open HCI Offset 11’'hOF0

31302928‘27262524‘23222120\19181716‘1514131211109 8‘7 6 5 4,3 2 1 0
P T T

cycleSeconds cycleCount cycleOffset

Figure 5-22 — Isochronous cycle timer register

Table 5-20 — Isochronous cycle timer register fields

field name rwu |reset | description

cycleSeconds rwd N/A| This field counts seconds (cycleCount rollovers) modulo 128

cycleCount rwu| N/A | This field counts cycles (cycleOffset rollovers) modulo 8000.

cycleOffset rwu| N/A | This field counts 24.576MHz clocks modulo 3072, i.e. uk25%f an externa
8KHz clock configuration is being used, cycleOffset shall be set to O at each
tick of the external clock.

Note that the ability to support an external clock is optional. Implementations
which support an external clock are not required to have an external clgck.

A host initiated write to the cycleTime register may evoke an IntEsyigInconsistenin some implementations.

5.14 Asynchronous Request Filters

The 1394 Open HCI allows for selective access to host memory and the Asynchronous Receive Request context so th
software can maintain host memory integrity. The selective access is provided by two sets of 64-bit registers:
PhysRequestFilter and AsynchRequestFilter. These registers allow access to physical memory and the AR Request conte
on a nodelD basis. The request filters shall not be applied to quadlet read requests directed at the Config ROM (includin
the ConfigROM header, BusID, Bus Options, and Global Unique ID registers) nor to accesses directed to the isochronou
resource management registers. When the link is enabled, access by any node to the first 1K of CSR config ROM shall b
enabled (see section 5.5.6). The Asynchronous Request FShatlsnot have any effecon Asynchronous Response
packets.

5.14.1 AsynchronousRequestFilter Registers (set and clear)

When a request is received by the Host Controller from the 1394 bus and that request does not access the first 1K of CS
config ROM on the Host Controller, then the sourcelD is used to index into the AsynchronousRequestFilter. If the corre-
sponding bit in the AsynchronousRequestFilter is 0, then requests from that device shall be ignackd glaall not be

sent). If however, the bit is set to 1, the requests shall be accepted and shall be processed according to the address of
request and the setting of the PhysicalRequestFilter register.

Copyright © 1996-2000 All rights reserved. Page 55

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Requests to offsets above PhysicalUpperBound (section 5.15), with the exception of offsets handled physically as
described in Section 12., shall be sent to the Asynchronous Receive Request DMA context. If the AR Request DMA
context is not enabled, then the Host Controller shall ignore the request.

Open HCI Offset 11’h100 - Set
Open HCI Offset 11’'h104 - Clear

31 30 29 28,27 26 25 2423 22 21 20,19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4;3 2 1 0
T T
| asynRegResource60 asynRegResource35 |
asynRegResource61 [[[asynRegResource34
asynRegResource62 asynRegResource33
asynReqgResourceAll asynRegResource32

Figure 5-23 — AsynchronousRequestFilterHi (set and clear) register

Open HCI Offset 11’h108 - Set
Open HCI Offset 11’h10C - Clear

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4;3 2 1 0
T]
| asynRegResource28 asynRegResource3 |
asynRegResource29 [] [] [] asynRegResource2
asynRegResource30 asynRegResourcel
asynRegResource31 asynRegResource0

Figure 5-24 — AsynchronousRequestFilterLo (set and clear) register

Table 5-21 — AsynchronousRequestFilter register fields

field name

rscu

reset | description

asynReqResourceN

rs

tu 1'b

D If set to one for local bus node number N, asynchronous requests
by the Host Controller from that node shall be accepted. All

asynRegResourceN bits shall be cleared to zero when a bus reset o

received

Curs.

asynReqResourceAll

rsa

u 1'b(

If set to one, all asynchronous requests received by the Host Contrd
all bus nodes (including the local bus) shall be accepted, and the val
all asynReqResourceN bits shall be ignored. A bus reset shall not affg

ller from
hes of
pct the

value of the asynRegResourceAll bit.

The AsynchronousRequestFilter bits are set by writing a one to the corresponding bit in the AsynchronousRequestFilter-
HiSet or AsynchronousRequestFilterLoSet address. They shall be cleared by writing a one to the corresponding bit in the
AsynchronousRequestFilterHiClear or AsynchronousRequestFilterLoClear address. If bit “asynRegResourceN” is set,
then requests with a sourcelD of either {10’h3FF, #n} or {busID, #n} shall be accepted. If the asynReqResourceAll bit is
set in AsynchronousRequestFilterHi, requests from all bus nodes including those on the local bus shall be accepted.

Reading the AsynchronousRequestFilter registers returns their current state. All asynReqResourceN bits in the
AsynchronousRequestFilter register shall be cleared to 0 on a 1394 bus reset.

Page 56 Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

5.14.2 PhysicalRequestFilter Registers (set and clear)

If an asynchronous request is received, passes the AsynchronousRequestFilter, and the offset is below PhysicalUppe
Bound (section 5.15), the sourcelD of the request is used as an index into the PhysicalRequestFilter. If the correspondin
bit in the PhysicalRequestFilter is set to 0, then the request shall be forwarded to the Asynchronous Receive Reque:
DMA context. If however, the bit is set to 1, then the request shall be sent to the physical response unit. (Note that withir
the Physical Range, lock transactions and block transactions with a non-zero extended tcode are always forwarded to tt
Asynchronous Receive Request DMA context. See Section 12.)

Open HCI Offset 11’h110 - Set
Open HCI Offset 11’'h114 - Clear

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4;3 2 1 0
] 1
| physReqResource60 physReqResource35 |
physReqResource61 [] [] [] physReqResource34
physReqResource62 physReqResource33
physReqResourceAllBuses physReqResource32
Figure 5-25 — PhysicalRequestFilterHi (set and clear) register
Open HCI Offset 11'h118 - Set
Open HCI Offset 11’'h11C - Clear
31 30 29 28,27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 12/11 10 9 8|7 6 5 4,3 2 1 0
T T
| physReqResource28 physReqResource3 |
physReqResource29 [[[physReqResource2
physReqResource30 physReqResourcel
physReqResource31 physReqgResource0

Figure 5-26 — PhysicalRequestFilterLo (set and clear) register

Table 5-22 — PhysicalRequestFilter register fields

field name

Iscu

reset | description

physReqResourceN

rs¢cu 1'b0

If set to one for local bus node number N, then asynchronous phy
requests received by the Host Controller from that node shall be acce
All PhysicalReqResourceN bits shall be cleared to zero when a bus 1
occurs.

sical
bpted.
eset

physRegResourceAllBuseés rscu 1'b0

If set to one, all asynchronous physical requests received by the |
troller from non-local bus nodes shall be accepted. A bus reset shall
affect the value of this bit.

Host Con-
hot

The PhysicalRequestFilter bits shall be set by writing a one to the corresponding bit in the PhysicalRequestFilterHiSet o
PhysicalRequestFilterLoSet address. They shall be cleared by writing a one to the corresponding bit in the
PhysicalRequestFilterHiClear or PhysicalRequestFilterLoClear address. If bit “physReqRes@is®t, then requests

Copyright © 1996-2000 All rights reserved. Page 57

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

with a sourcelD of either {10’h3FF, #n} or {busID, #n} shall be accepted. If the physReqResourceAllBuses bit is set in
PhysicalRequestFilterHi, physical requests from any device on any other bus shall be accepted (bus number other than
10’h3FF and busID).

Physical requests that are rejected by the PhysicalRequestFilter shall be sent to the AR Request DMA context if the AR
Request DMA context is enabled. If it is disabled then the Host Controller shall ignore the requests.

Reading the PhysicalRequestFilter registers returns their current states. All physReqResourceN bits in the PhysicalRe-
questFilter registers are cleared to 0 on a 1394 bus reset.

5.15 Physical Upper Bound register (optional)

Asynchronous requests which are candidates to be handled by the physical response unit include requests that have a
destination offset which falls within thghysicalrange. This range begins at 48'h0 and ends at the offset specified in this
register. In general, requests at physUpperBoundOffset or higher are handled by the Asynchronous Receive Request
context. Refer to section 12. for details about Physical Requests.

For use with 64-bit implementations, the Physical Upper Bound register comprises the top 32 bits of a 48-bit offset and
provides a mechanism for implementations to specify physical access for offsets above 48'0000_FFFF_FFFF (4GB).

Physical Upper Bound Offset (0 to 32’hFFFF_0000) 16’h0000

Physical Upper Bound

48'hFFFF_FFFF_FFFF

Physical Upper Bound —p»} — — — — — .
.1- Physical Range

48'h0000_0000_0000 -J
Figure 5-27 — 48-bit Physical Upper Bound

Open HCI Offset 11’120

31 30 29 28,27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 12,11 10 9 8|7 6 5 4,3 2 1 0
L L L L L L L e

physUpperBoundOffset

Figure 5-28 — Physical Upper Bound register

Page 58 Copyright © 1996-2000 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 5-23 — Physical Upper Bound register fields

soft&
hard |bus-
field name rwu |reset |reset | description
physUpperBoundOffset | rw|undef| N/A | Represents the high-order 32 bits of the 48 bit destination offset, with the
or remaining 16 bits set to 16’h0. Requests to this offset or higher shal| be
r handled by the Asynchronous Receive Request context, with some

exceptions as outlined in Chapter 12.

Software shall not set physUpperBoundOffset to a value above
32’hFFFF_0000.

If implemented, this shall be a read/write register.

If not implemented, this register shall be read-only with a value of 32'h0
and the upper bound of the physical range shall be 48’h0001_0000_{0000.

Copyright © 1996-2000 All rights reserved. Page 59

1394 Open HCI Registers 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Page 60 Copyright © 1996-2000 All rights reserved.

Interrupts 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

6. Interrupts

The 1394 Open HCI reports two classes of interrupts to the host: DMA interrupts and device interrupts. DMA interrupts
are generated when DMA transfers complete (or are aborted). Device interrupts come directly from the remaining 1394
Open HCI logic. For example, one of these interrupts could be sent in response to the asserting edge of cycleStart,
signal which indicates that a new isochronous cycle has started.

The 1394 Open HCI contains two primary 32-bit registers to report and control interrupts: IntEvent and IntMask. Both
registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit written t
the “Set” address causes the corresponding bit in the register to be set (excluding bits which are read-only), while a “one
bit written to the “Clear” address causes the corresponding bit to be cleared. For both addresses, writing a “zero” bit ha
no effect on the corresponding bit in the register.

The IntEvent register contains the actual interrupt request bits. Each of these bits corresponds to either a DMA completio
event, or a transition on a device interrupt line. The IntMask register is ANDed with the IntEvent register to enable
selected bits to generate processor interrupts. Software writes to the IntEventClear register to clear interrupt condition
reported in the IntEvent register.

A processor interrupt is generated when one or more unmasked bits are set in the IntEvent register. Low-level softwar
responds to the interrupt by reading the IntEvent register, then writing the value read to the IntEventClear register. At this
point the interrupt request is deasserted (assuming no new interrupt bit has been set). Software can proceed to process
reported interrupts in whatever priority order it chooses, and is free to re-enable interrupts as soon as the IntEventClec
register is written.

In addition, the 1394 Open HCI contains four secondary 32-bit registers to report and control interrupts for isochronous
transmit and receive contexts. Each register has two addresses: a “Set” address and a “Clear” address.

6.1 IntEvent (setand clear)

This register reflects the state of the various interrupt sources from the 1394 Open HCI. The interrupt bits are set by al
asserting edge of the corresponding interrupt signal, or by software by writing a one to the corresponding bit in the
IntEventSet address. They are cleared by writing a one to the corresponding bit in the IntEventClear address.

Reading the IntEventSet register returns the current state of the IntEvent register. Reading the IntEventClear registe
returns themaskedversion of the IntEvent registein{Event & IntMask.

Copyright © 1996-2000 All rights reserved. Page 61

Interrupts

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

On a hardware reset or soft reset, the values of all bits in this register are undefined.

Open HCI Offset 11’h080 - Set
Open HCI Offset 11'h084 - Clear

31 30 29 28,27 26 25 24/23 22 21 20,19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4,3 2 1 0
e I | | Iseh‘IDCompIeteZ ! TXC let
vendorSpecific selfiDComplete reqTxComplete
softinterrupt busReset respTxComplete
ack_tardy regAccessFail ARRQ
phyRegRcvd phy lockRespErr ARRS
cycleTooLong cycleSynch postedWriteErr RQPkt
unrecoverableError cycle64Seconds isochRx RSPkt
cycleinconsistent cycleLost isochTx

Figure 6-1 — IntEvent register

Table 6-1 — IntEvent register description (Sheet 1 of 3)

Field
reqTxComplete

Bit #
0

rscu | Description

rscy Asynchronous request transmit DMA interrupt. This bit is conditionally set
completion of an AT DMA requeSQQUTPUT_LAST* command. For Host Contr(
lers that implement out-of-order AT request pipelining (see section 7.7), if a
active is set the AT request transmitter retries a packet then this bit shall be s
the AT request context goes inactive.

upon
|-

er

t when

respTxComplete rscu Asynchronous response transmit DMA interrupt. This bit is conditionally s¢
completion of an AT DMA response OUTPUT_LAST* command. For Host G
trollers that implement out-of-order AT response pipelining (see section 7.7)
after active is set the AT response transmitter retries a packet then this bit s

set when the AT response context goes inactive.

bt upon
on-

| if

hall be

ARRQ rscu| Asynchronous Receive Request DMA interrupt. This bit is conditionally set

completion of an AR DMA Request context command descriptor.

upon

ARRS rscu| Asynchronous Receive Response DMA interrupt. This bit is conditionally sej

completion of an AR DMA Response context command descriptor.

t upon

RQPkt rscu| Indicates that a packet was sent to an asynchronous receive request contgxt buffer
and the descriptor’s xferStatus and resCount fields have been updated.
This differs from ARRQ above since RQPkt is a per-packet completion indig
and ARRQ is a per-command descriptor (buffer) completion indication. AR

Request buffers may contain more than one packet.

ation

RSPkt rscu Indicates that a packet was sent to an asynchronous receive response confext buffer
and the descriptor’s xferStatus and resCount fields have been updated.
This differs from ARRS above since RSPkt is a per-packet completion indication
and ARRS is a per-command descriptor (buffer) completion indication. AR

Response buffers may contain more than one packet.

isochTx ru | Isochronous Transmit DMA interrupt. Indicates that one or more isochrono
transmit contexts have generated an interrupt. This is not a latched event, it
OR’ing all bits in (isoXmitIntEvent & isoXmitIntMask). The isoXmitIntEvent

register indicates which contexts have interrupted. See section 6.3.

IS
is the

Page 62 Copyright © 1996-2000 All rights reserved.

Interrupts 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 6-1 — IntEvent register description (Sheet 2 of 3)

Field Bit # | rscu | Description

isochRx 7 ru | Isochronous Receive DMA interrupt. Indicates that one or more isochronous
receive contexts have generated an interrupt. This is not a latched event, it [s the
OR’ing all bits in (isoRecvIntEvent & isoRecvIntMask). The isoRecvIintEvent
register indicates which contexts have interrupted. See section 6.4.

postedWriteErr 8 rscy Indicates that a host bus error occurred while the Host Controller was trying|to write
a 1394 write request, which had already been given an ack_complete, into $ystem
memory. The 1394 destination offset and sourcelD are available in the
PostedWriteAddress registers described in section 13.2.8.1.

lockRespErr 9 rscy Indicates that the Host Controller attempted to return a lock response for @ lock
request to a serial bus register described in Section 5.5.1, but did not receive an
ack_complete after exhausting all permissible retries.

reserved 10-14

selfIDcomplete?2 15| rscy Secondary indication of the end of a selfID packet stream. This bit shall b¢ set by
the Open HCI when it sets selfIDcomplete, and shall retain state independent of
IntEventbusReset

selfIDcomplete 16 | rscu A selfID packet stream has been received. Will be generated at the end of| the bus
initialization process if LinkContrakcvSelfIDis set. This bit is turned off
simultaneously when IntEvebtsReseis turned on.

busReset 17| rscu Indicates that the PHY chip has entered bus reset mode. When this bit is det, writes
to the CSRControl, AsynchronousRequestFilter registers, and PhysicalReq(iestFil-
ter registers have no effect. See section 6.1.1 below for information on when tp clear
this interrupt.

regAccessFail 18| rscu Indicates that an Open HCI register access failed due to a missing SCLK [clock
signal from the PHY. When aregister access fails, this bit shall be set before the next
register access. See section 1.4.1 and for more information on this error condition,
and Chapter 4., “Register addressing,” for a list of Open HCI registers that njay be
implemented in the SCLK domain.

phy 19 | rscu| Generated when the PHY requests an interrupt through a status transfer.

cycleSynch 20| rscu Indicates that a new isochronous cycle has started. Set when the low order|bit of the
internal isochronousCycleTimeycleCountoggles.

cycle64Seconds 21/ rsqu Indicates that the 7th bit of the cycle second counter has changed.

cycleLost 22 | rscy A lost cycle is indicated when no cycle_start packet is sent/received betwegen two

successive cycleSynch events.

cyclelnconsistent 23| rscy A cycle start was received that had an isochronous cyck=Goretsind
isochronous cycleTimauntdifferent from the value in the CycleTimer registgr.
Implementations are free to indicate a cyclelnconsistent if a host initiated wfite
changes the cycleSeconds or cycleCount fields of the cycleTimer register
(section 5.13). For the effect of this condition on isochronous transmit, refer|to
section 9.5.1 and for isochronous receive refer to section 10.5.1.

unrecoverableErrgr 24| rscu This event occurs when the Host Controller encounters any error that for¢es it to
stop operations on any or all of its subunits. For example, when a DMA contekt sets

its contextControtleadbit.
While unrecoverableError is set, all normal interrupts for the context(s) that chused
this interrupt will be blocked from being set.

cycleToolLong 25| rscu This bit shall be set when an isochronous cycle lasted longer than the allot{ed time,
LinkControlcycleMasteris set, and the Host Controller is the 1394 root node
Hardware shall set this bit no less than il$8cs and no more than 126ecs afte
sending a cycle start packet unless a subaction gap or bus reset indication is first
observed. LinkContratycleMastershall be cleared when this bit is set.

Copyright © 1996-2000 All rights reserved. Page 63

Interrupts 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 6-1 — IntEvent register description (Sheet 3 of 3)

Field Bit # | rscu | Description

phyRegRcvd 26| rscu The 1394 Open HCI has received a PHY register data byte which can be read from
the PHY control register (see 5.12).

ack_tardy 27 | rscu This bit shall be set when HCCoratclTardyEnablés set to one and any of the

following conditions occur:

a. Data is present in a receive FIFO that is to be delivered to the host.
b. The physical response unit is busy processing requests or sending respopses
c. The Host Controller sent an ack_tardy acknowledgment

Refer to Annex A., “PClI Interface (optional),”section A.4, for a discussion on|how
ack_tardy relates to PCI Power Management. If the D1 power state is not
implemented this bit is reserved.

reserved 28

softinterrupt 29 rsc| Software Interrupt. This bit may be used by software to generate a Host Cqntroller
interrupt for its own use.

vendorSpecific 30 Vendor defined.

reserved 31

6.1.1 busReset

When a bus reset occurs and the busReset interrupt is set to one, the selfIDComplete interrupt is simultaneously cleared
to 0. The Host Controller shall prevent software from clearing the busReset interrupt bit during the self-ID phase of bus
initialization. Software must take precautions regarding the asynchronous transmit contexts before clearing this interrupt.
Refer to section 7.2.3 for further detalils.

6.2 IntMask (set and clear)

The bits in the IntMask register have the same format as the IntEvent register, with the addition of masterintEnable (bit
31). A one bit in the IntMask register enables the corresponding IntEvent register bit to generate a processor interrupt. A
zero bit in IntMask disables the corresponding IntEvent register bit from generating a processor interrupt. A bit is set in

the IntMask register by writing a one to the corresponding bit in the IntMaskSet address and cleared by writing a one to
the corresponding bit in the IntMaskClear address.

If masterintEnable is 0, all interrupts are disabled regardless of the values of all other bits in the IntMask register. The
value of masterintEnable has no effect on the value returned by reading the IntEventClear; even if masterintEnable is 0,
reading IntEventClear will return (IntEvent & IntMask) as described earlier in section 6.1.

Page 64 Copyright © 1996-2000 All rights reserved.

Interrupts 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

On a hardware or soft reset, the IntMas&sterintEnableit (31) shall be 0 and the value of all other bits is undefined.

Open HCI Offset 11’h088 - Set
Open HCI Offset 11’h08C - Clear

31 30 29 28, 27 26 25 24/23 22 21 20,19 18 17 16/15 14 13 121110 9 8|7 6 5 4;3 2 1 0

| ! I
masterintEnable | selfibComplete2 reqTxComplete
vendorSpecific selfiDComplete respTxComplete
busReset
softinterrupt regAccessFail ARRQ
ack_tardy phy lockRespErr ARRS
phyRegRcvd cycleSynch postedWriteErr RQPkt
cycleTooLong cycle64Seconds isochRx RSPkt
unrecoverableError cycleLost isochTx
cyclelnconsistent
Figure 6-2 — IntMask register
Table 6-2 — IntMask register description
Field Bit # | rscu | Description
interrupt events for; 0-9| rsqg¢ See Table 6-1.
reserved 10-14
interrupt events for 15-27 rs¢ See Table 6-1.
reserved 28
interrupt event for 29 rsq See Table 6-1.
vendorSpecific 30 Vendor defined.
masterintEnable 31| rscu If set, external interrupts will be generated in accordance with the IntMask|register.
If clear, no external interrupts will be generated regardless of the IntMask rdgister
settings.

6.3 IsochTx interrupt.registers

There are two 32-bit registers to report isochronous transmit context interrupts: isoXmitintEvent and isoXmitintMask.
Both registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit writte
to the “Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear” addres:
causes the corresponding bit to be cleared. For all four addresses, writing a “zero” bit has no effect on the correspondin
bit in the register.

The isoXmitintEvent register contains the actual interrupt request bits. Each of these bits corresponds to a DMA
completion event or a cycle skip event for the indicated isochronous transmit context. The isoXmitIntMask register shall
be ANDed with the isoXmitIntEvent register to enable selected bits to generate processor interrupts. If (isoXmitintMask
& isoXmitIntEvent) is not zero, then the IntEvasbchTxbit will be set to one, and if enabled via the IntMask register it

will generate a processor interrupt. A software write to the isoXmitintEventSet register can therefore cause an interrupt (if
not otherwise masked). A software write to the isoXmitintEventClear register will clear interrupt conditions reported in
the isoXmitIntEvent register.

Copyright © 1996-2000 All rights reserved. Page 65

Interrupts 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Reading the isoXmitintEventSet register returns the current state of the isoXmitintEvent register. Reading the
isoXmitIntEventClear register returns thmasked version of the isoXmitintEvent registeris¢XmitintEvent &
isoXmitIntMask

6.3.1 isoXmitintEvent (set and clear)

This register reflects the interrupt state of the isochronous transmit contexts. An interrupt is generated on behalf of an
isochronous transmit context if an OUTPUT_LAST DMA command completes andiits are set to 2’b11 (interrupt
always). Upon determining that the IntEvédchTxinterrupt has occurred, software can check the isoXmitintEvent
register to determine which context(s) caused the interrupt.

Open HCI Offset 11’h090 - Set
Open HCI Offset 11'h094 - Clear

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16|15 14 13 121110 9 8|7 6 5 4;3 2 1 0

T T
| isoXmit28 isoXmit3 |

isoXmit29 [) [) [) isoXmit2
isoXmit30 isoXmitl
isoXmit31 isoXmit0

Figure 6-3 — isoXmitIntEvent (set and clear) register

On a hardware reset or soft reset, values of all bits in this register are undefined. Note that in these circumstances the
IntMaskmasterintEnabléds set to zero, therefore masking all interrupts until re-enabled by software.

Page 66 Copyright © 1996-2000 All rights reserved.

Interrupts 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

6.3.2 isoXmitintMask (set and clear)

The bits in the isoXmitintMask register have the same format as the isoXmitintEvent register. Setting a bit in this register
shall enable the corresponding interrupt event in the isoXmitintEvent register. Clearing a bit in this register shall disable
the corresponding interrupt event in the isoXmitintEvent register.

Open HCI Offset 11’h098 - Set
Open HCI Offset 11’h09C - Clear

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16|15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0

| i!SOXmi'[ZS iszmitLI% |
isoXmit29 () () () isoXmit2
isoXmit30 isoXmitl
isoXmit31 isoXmit0

Figure 6-4 — isoXmitintMask (set and clear) register

Bits for all unimplemented contexts shall be 0's. Software can use this register to determine which contexts are supporte
by writing to it with all 1's, then reading it back. Contexts with a 1 are implemented, and those with a 0 are not.

On a hardware reset or soft reset, values for all bits in this register are undefined.

6.4 IsochRx interruptregisters

There are two 32-bit registers to report isochronous receive context interrupts: isoRecvintEvent and isoRecvintMask. Bott
registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit written t
the “Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear” addres:s
causes the corresponding bit to be cleared. For all four addresses, writing a “zero” bit has no effect on the correspondin
bit in the register.

The isoRecvIntEvent register contains the actual interrupt request bits. Each of these bits corresponds to a DMA comple
tion event for the indicated isochronous receive context. The isoRecvIintMask register is ANDed with the isoRecvIntEvent
register to enable selected bits to generate processor interrupts. If (isoRecvintMask & isoRecvintEvent) is not zero, thet
the IntEvenisochRxbit will be set to one, and if enabled via the IntMask register it will generate a processor interrupt. A
software write to the isoRecvIntEventSet register can therefore cause an interrupt (if not otherwise masked). A software
write to the isoRecvIntEventClear register will clear interrupt conditions reported in the isoRecvIntEvent register.

Reading the isoRecvIntEventSet register returns the current state of the isoRecvIntEvent register. Reading the
isoRecvIntEventClear register returns thaskedversion of the isoRecvintEvent registesoRecvIintEvent & isoRecvint-
MaskK).

6.4.1 isoRecvIntEvent (set and clear)
This register reflects the interrupt state of the isochronous receive contexts. An interrupt shall be generated on behalf c

an isochronous receive context in packet-per-buffer mode if a packet completes and the packet descriptoitshhrek
set to 2’b11. An interrupt shall be generated on behalf of an isochronous receive context in buffer-fill mode or dual-buffer

Copyright © 1996-2000 All rights reserved. Page 67

Interrupts 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

mode if a packet completes and any of the buffers it spans havebitiseset to 2'b11 in their corresponding descriptor
blocks. Upon determining that the IntEvéstchRxinterrupt has occurred, software can check the isoRecvintEvent
register to determine which context(s) caused the interrupt.

Open HCI Offset 11’h0AO - Set
Open HCI Offset 11’'h0A4 - Clear

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16|15 14 13 1211 10 9 8|7 6 5 4;3 2 1 0

]]
| isoRecv28 isoRecv3 |
isoRecv29 ® ® ® isoRecv2
isoRecv30 isoRecvl
isoRecv31l isoRecv0

Figure 6-5 — isoRecviIntEvent (set and clear) register

On a hardware reset or soft reset, values of all bits in this register are undefined. Note that in these circumstances the
IntMaskmasterintEnablés set to zero, therefore masking all interrupts until re-enabled by software.

6.4.2 isoRecvIntMask (set and clear)

The bits in the isoRecvIntMask register have the same format as the isoRecvIntEvent register. Setting a bit in this register
shall enable the corresponding interrupt event in the isoRecvIntEvent register. Clearing a bit in this register shall disable
the corresponding interrupt event in the isoRecvintEvent register.

Open HCI Offset 11’h0OAS8 - Set
Open HCI Offset 11’hOAC - Clear

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16|15 14 13 121110 9 8|7 6 5 4;3 2 1 0

]]
| isoRecv28 isoRecv3 |
isoRecv29 o o o isoRecv2
isoRecv30 isoRecvl
isoRecv31l isoRecv0

Figure 6-6 — isoRecvIntMask (set and clear) register

Bits for all unimplemented contexts shall be 0's. Software may use this register to determine which contexts are supported
by writing to it with all 1's then reading it back. Contexts with a 1 are implemented, and those with a 0 are not.

On a hardware reset or soft reset, values of all bits in this register are undefined.

Page 68 Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

7. Asynchronous TransmitDMA

The 1394 Open HCI divides the transmission of asynchronous packets into three categories: asynchronous requests, as)
chronous responses, and physical responses. This chapter describes how to use DMA to transmit asynchronous reque
and asynchronous responses. For information regarding physical responses, see section 12., “Physical Requests.”

There is one DMA controller for each transmit context: the Asynchronous Transmit (AT) Request Controller for the AT
request context, and the AT Response Controller for the AT response context. Although Open HCI does not specify how
many FIFOs are required to support the AT DMA controllers, it is required that the re-transmission of request packets
never blocks the transmission of response packets.

The AT Request context is used by software to transmit read, write and lock request packets and the AT Response conte
is used to send response packets to read, write, and lock requests that have earlier been received into the asynchron
receive request context buffers (see section 8., “Asynchronous Receive DMA”).

Each context consists of a context program and two registers. A context program is a list of commands for that contex
which direct the Host Controller on how to assemble packets for transmission. The DMA controller for that context
executes each command, inserting data into the appropriate FIFO and interrupting as requested.

The following sections describe how to set up and manage an AT DMA context program and describe the data formats fo
the various asynchronous request and response packet types.

7.1 AT DMA Context Programs

Each asynchronous transmit packet, whether a request or response packet, shall be described by a contiguous list
command descriptors referred to adescriptor block A chain of descriptor blocks is referred to as a context program.
There are four different command descriptors that can be used within each descriptor block: OUTPUT_MORE,
OUTPUT_MORE-Immediate, OUTPUT_LAST and OUTPUT_LAST-Immediate. In the descriptions that follow,
OUTPUT_MORE?* refers to both the OUTPUT_MORE and OUTPUT_MORE-Immediate commands, OUTPUT_LAST*
refers to both the OUTPUT_LAST and OUTPUT_LAST-Immediate commands and *-Immediate refers to both the
OUTPUT_MORE-Immediate and OUTPUT_LAST-Immediate commands.

Each packet shall be specified in one descriptor block. A descriptor block may have either one single OUTPUT_LAST-
Immediate descriptor, or may have one OUTPUT_MORE-Immediate descriptor followed by zero to five
OUTPUT_MORE descriptors, followed by one OUTPUT_LAST descriptor. This allows software to combine up to seven
fragments to specify a single packet. In addition, the first command descriptor in a descriptor block must be one of the *-
Immediate commands to transmit the full 1394 packet hefadehe packet’s tcode type, whevacket headeis defined

as all quadlets that appear before the 1394 packet header CRC quadlet and that are required by the respective pac
format (defined in section 7.8). Further, a descriptor block for a packet shall not exceed 128 bytes. The OUTPUT_MORE
and OUTPUT_LAST command descriptors are 16-bytes in length, and the *-Immediate descriptors are 32-bytes in length
All descriptors must be aligned on a 16-byte boundary.

The order in which packets are transmitted may not be the same as the order of descriptor blocks in the context progra
when out-of-order AT pipelining is implemented. Refer to section 7.7 for more information.

In the sections below, the format for each command descriptor is shown. The shaded fields are reserved and should be
to 0 by software. Fields with a hardcoded value must be set to that value by software. The values of all other fields are
described in each command’s descriptor element summary.

Copyright © 1996-2000 All rights reserved. Page 69

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

7.1.1 OUTPUT_MORE descriptor

The OUTPUT_MORE command descriptor is used to specify a host memory buffer from which the AT DMA controller
will insert bytes into the appropriate transmit FIFO. It has the following format.

cmd=0 %Qﬁ'lg

reqCount

2b
QO 1 1 1 1 1 1
dataAddress

Figure 7-1 — OUTPUT_MORE descriptor format

Table 7-1 — OUTPUT_MORE descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h0 for OUTPUT_MORE.

key 3 Set to 3'h0 for OUTPUT_MORE.

b 2 Branch control. Software must set this field to 2’'b00. Values of 2'b11, 2'b10, 2’b01 will
result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes starting at dataAddress.

dataAddress 32 Address of transmit data. dataAddress has no alignment restrictions.

Page 70 Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

7.1.2 OUTPUT_MORE_Immediate descriptor

The OUTPUT_MORE-Immediate command descriptor is used to specify up to four quadlets of packet header information
to be inserted into the appropriate transmit FIFO. It has the following format.

cmd=0 Ig?%g

68 reqCount=8 or 16

timeStamp (AT response only)

first quadlet

second quadlet
1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1

third quadlet

fourth quadlet

Figure 7-2 — OUTPUT_MORE-Immediate descriptor format

Table 7-2 — OUTPUT_MORE-Immediate descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h0 for OUTPUT_MORE-Immediate

key 3 Set to 3'h2 for OUTPUT_MORE-Immediate.

b 2 Branch control. Software must set this field to 2’'b00. Values of 2'b11, 2'b10, 2’b01 will
result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes immediately following the 16th byte
of this descriptor. This value shall be either 8 (two quadlets) or 16 (four quadlets).|Speci-
fying any other value will result in unspecified behavior. Regardless of the reqCount
value, this descriptor is always 32 bytes long.

timeStamp 16 Valid only in the AT responsentext. This field contains the three low order bits of
cycleSeconds and all 13 bits of cycleCount. See section 5.13, “Isochronous Cyclg Timer
Register” for information about these fields.
For AT responseackets, timeStamp indicates a time after which the packet should hot be
transmitted. For further information on the use of this field, see section 7.1.5.3 below.

first, second, third, angd128 | Packet header quadlets to be inserted into the applicable FIFO.

fourth quadlets

The OUTPUT_MORE-Immediate command shall only be used either to specify the four quadlet 1394 transmit packet
header for a block payload or lock packet, or to specify the two quadlet 1394 transmit packet header for an asynchronou
stream packet. All OUTPUT_MORE-Immediate command descriptors are 32-bytes in length and are counted as two 16
byte aligned blocks when calculating the Z value.

Copyright © 1996-2000 All rights reserved.

Page 71

Asynchronous Transmit DMA

1394 Open Host Controller Interface Specification / Release 1.1

7.1.3 OUTPUT_LAST descriptor

Printed 1/10/00

The OUTPUT_LAST command descriptor is used to specify a host memory buffer from which the AT DMA controller
will insert bytes into the appropriate transmit FIFO. This command indicates the end of a packet to the Host Controller. It
has the following format.

emd= [|5 [Pl 1AL L L readeumt
i Al
.. brenchaddess L | %
L Merses] tmeStamp reessow |

Figure 7-3 — OUTPUT_LAST descriptor format

Table 7-3 — OUTPUT_LAST descriptor element summary

cates
Ansmit-
a ping
e link
nation

e 3-2

P'b00

r, begin-

st be pro-

Element Bits | Description

cmd 4 Set to 4’h1 for OUTPUT_LAST.

key 3 Set to 3'h0 for OUTPUT_LAST.

p 1 Ping Timing. This field is only applicable in the AT request context. A value of 1 indi
that this is a ping packet. A ping packet is used to discern the round-trip time of tr3
ting a packet to another node. The timeStamp value written into this descriptor for
packet shall be the time from when the last bit of the packet is transmitted from th
to the PHY until either data is received or a subaction gap occurs. For more inforn
on ping timing, see section 7.1.5.3.2.

A 0 indicates that this is not a ping packet.

i 2 Interrupt control. Options:
2'b11 - Always interrupt upon command completion.
2'b01 - Interrupt only if did not receive an ack_complete or ack_pending. See tabl
for a list of possible ack_ and evt_ values.
2'b00 - Never interrupt.

Specifying a value of 2'b10 will result in unspecified behavior.

b 2 Branch control. Software must set this field to 2’'b11. Values of 2’'b10, 2'b01, and
will result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes described by this descriptg
ning at dataAddress.

dataAddress 32 Address of transferred data. dataAddress has no alignment restrictions.

branchAddress 28 16-byte aligned address of the next descriptor. A valid host memory address mu
vided in this field unless the Z field is 0.

4 4 This field indicates the number of 16-byte command blocks that comprise the next
If this is the last descriptor in the list, the Z value must be 0. Otherwise, valid value
to 8. Note that each *-Immediate command descriptor is counted as two 16-byte |
and each non-immediate command is counted as one 16-byte block.

backet.
5 are 2
locks

Page 72

Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA

1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 7-3 — OUTPUT_LAST descriptor element summary

Element Bits | Description
xferStatus 16 Written with ContextControl [15:0] after descriptor is processed.
timeStamp 16 For AT requeptckets that are not ping packets, this field is written by hardware t

indicate the transmission time of the packet. This transmission timestamp contain|
three low order bits of cycleSeconds and all 13 bits of cycleCount. See section 5.
“Isochronous Cycle Timer Register” for information about those two fields.

For AT requespackets that are ping packets, this field is written by hardware to ing
the measured ping duration in units of 49.152 MHz clocks. See section 7.1.5.3.2 {
information about this duration value.

For AT respons@ackets, timeStamp is not valid (response descriptor blocks use al
timestamp in the *-Immediate descriptor).

D
s the
|3,

icate
or

For further information on the use of the timeStamp field, see section 7.1.5.3.

Copyright © 1996-2000 All rights reserved. Page 7

3

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

7.1.4 OUTPUT_LAST_ Immediate descriptor

The OUTPUT_LAST-Immediate command descriptor is used to specify two to four quadlets of packet header information
to be inserted into the appropriate transmit FIFO. This command indicates the end of a packet to the Host Controller. It
has the following format.

cmd=1 Ifo;?ﬁ’zz p| | i ﬂ’ reqCount=8, 12 or 16

branchAddress Z

xferStatus timeStamp

first quadlet

second quadlet

third quadlet

fourth quadlet

Figure 7-4 — OUTPUT_LAST-Immediate descriptor format

Table 7-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h1 for OUTPUT_LAST-Immediate.

key 3 Set to 3'h2 for OUTPUT_LAST-Immediate.

p 1 Ping Timing. This field is only applicable in the AT request context. A value of 1 indicates

that this is a ping packet. A ping packet is used to discern the round-trip time of transmit-
ting a packet to another node. The timeStamp value written into this descriptor for|a ping
packet shall be the time from when the last bit of the packet is transmitted from the link

to the PHY until either data is received or a subaction gap occurs. For more information
on ping timing, see section 7.1.5.3.2.

A 0 indicates that this is not a ping packet.

i 2 Interrupt control. Options:

2'b11 - Always interrupt upon command completion.
2'b01 - Interrupt only if did not receive an ack_complete or ack_pending. See table 3-2
for a list of possible ack and evt values.
2'b00 - Never interrupt.

Specifying a value of 2'b10 will result in unspecified behavior.

b 2 Branch control. Software must set this field to 2’b11. Values of 2'b10, 2'b01, and P’b00
will result in unspecified behavior.

reqgCount 16 Request Count: The number of transmit packet bytes immediately following the 1§th byte
of this descriptor. Valid values are 8(two quadlets), 12(three quadlets) and 16(fou
guadlets). Specifying any other values will result in unspecified behavior. Regardlgss of
the reqCount value, this descriptor is always 32 bytes long.

branchAddress 28 16-byte aligned address of the next descriptor. A valid host memory address must be pro-
vided in this field unless the Z field is 0.
4 4 This field indicates the number of 16-byte command blocks that comprise the next packet.

If this is the last descriptor in the list, the Z value must be 0. Otherwise, valid valuep are 2
to 8. Note that each *-Immediate command descriptor is counted as two 16-byte locks
and each non-immediate command is counted as one 16-byte block.

xferStatus 16 Written with ContextControl [15:0] after descriptor is processed.

Page 74 Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

Table 7-4 — OUTPUT_LAST-Immediate descriptor element summary

Element

Bits

Description

timeStamp

16

For AT requeptckets that are not ping packets, this field is written by hardware t
indicate the transmission time of the packet. This transmission timestamp contain
three low order bits of cycleSeconds and all 13 bits of cycleCount. See section 5.
“Isochronous Cycle Timer Register” for information about those two fields.

For AT requespackets that are ping packets, this field is written by hardware to ing
the measured ping duration in units of 49.152 MHz clocks. See section 7.1.5.3.2 {
information about this duration value.

For AT responseackets, this field is written by software to indicate a time after whic
packet should not be transmitted. This time is expressed in the same
cycleSeconds/cycleCount format as for request packets that are not ping packets
For further information on the use of the timeStamp field, see section 7.1.5.3.

D
s the
| 3,

icate
or

N the

first, second, third, an
fourth quadlets

(1128

Data quadlets to be inserted into the applicable FIFO.

The OUTPUT_LAST-Immediate command will be used to specify information that is protected by the header CRC or for
sending a PHY packet. OUTPUT_LAST-Immediate command descriptors are 32-bytes in length regardless of the value o
reqCount and are counted as two 16-byte aligned blocks when calculating the Z value.

Copyright © 1996-2000 All rights reserved.

Page 75

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

7.1.5 AT DMA descriptor usage

Fields in the command descriptor are further described below.

7.1.5.1 Command.Z

The Z value is used by the Host Controller to enable several descriptors to be fetched at once, for improved efficiency. Z

values must always be encoded correctly. The contiguous descriptors described by a Z value ardesaligataa block
The following table summarizes all legal Z values for the Asynchronous Transmit contexts:

Table 7-5 — Z value encoding

Z value Use
0 Indicates that the current descriptor is the last descriptor in the context program
1 reserved. (Since all descriptor blocks must start with a *-Immediate command, they are

by definition a minimum of two 16-byte blocks in size.)

2-8 Indicates that two to eight 16-byte aligned blocks starting at branchAddress are
physically contiguous and specify a single packet. Note that the 32-byte *-Immedliate
command descriptors must be counted as two 16-byte blocks when calculating the Z
value.

9-15 reserved

A single packet that is to be transmitted must be entirely described by one descriptor block. This requirement permits the
Host Controller to prefetch all the descriptors for a packet, in order to avoid fetching additional descriptors during a

packet transfer. The branch address+Z allows the Host Controller to learn the Z value of the next block. Only the

OUTPUT_LAST* descriptor shall specify a branch address+Z for the next packet. BranchAddress+Z values are ignored
in all OUTPUT_MORE* descriptors, and should not be specified.

All DMA context programs must use a Z = 0 command to indicate the end of the program. A program which ends in Z=0
can be appended to while the DMA runs, even if the DMA has already reached the end. The mechanism for doing this is
described in section 3.2.1.2.

7.1.5.2 Command.xferStatus

Upon the transmission completion of a packet, the 16 least significant bits of the current contents of the DMA Context-
Control register are written to the completed packet's OUTPUT_LAST* descriptor's ComxfeatStiatusfield. See
section 7.2.2 for the contents of this field.

7.1.5.3 Command.timeStamp

The timeStamp field is encoded as follows:

15 14 13 12;11 10 9 8|7 6 5 4,3 2 1 0
I I B B B B B R EE

cycle
Seconds
L N T N O A

Figure 7-5 — timeStamp format

Page 76 Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 7-6 — timeStamp description

Field Bits Description

cycleSeconds 3 Low order three bits of the seven-bit isochronous cycle timer second count.
Possible values are O to 7.

cycleCount 13 Full 13 bits of the 13-bit isochronous cycle timer cycle count.
Possible values are 0 to 7999.

7.1.5.3.1 timeStamp value for Requests

An asynchronous transmit request packet may initiate a transaction which should complete by a specific time. To permi
host software to know when such a transaction began (i.e., when the request was successfully transmitted on the 1394 bt
the Host Controller shall write the timeStamp value in each OUTPUT_LAST* descriptor when the corresponding ack is
received. If no ack is received, timeStamp will be written when the ack timeout occurs. TimeStamp shall be written in the
same host bus operation in which xferStatus is written.

Note that a transmit request packet may sit in the transmit FIFO for some time before the PHY wins normal arbitration.
This delay is usually brief, but could be over 200 cycles (over 25 milliseconds) in the case of a bus with 80% isochronous
traffic and 63 nodes each sending maximum-size asynchronous packets as often as possible.

7.1.5.3.2 timeStamp value for Ping Requests

Pingingis used to discern the round-trip time of transmitting a packet to another node. In IEEE 1394-1995 this is done by
transmitting a packet to a node and timing how long it takes to receive the corresponding ack. In IEEE1394a, this is don
by transmitting a Ping packet to a node and timing how long it takes to receive that node’s self-ID packet as a response.

Software sets the bit in the packet's OUTPUT_LAST* command descriptor to indicate it is a ping packet. The Host
Controller shall transmit the packet and track the timing based on the number of 49.152MHz clocks, and shall place the
final result in the descriptor’s timeStamp field.

The Ping timer begins counting from zero immediately after the last bit of each transmitted packet is delivered from the
link to the PHY. (For controllers that implement the IEEE1394a standardized PHY/Link interface, the timer would start
with the first HOLD or IDLE driven by the link after each transmitted packet.) The Ping timer stops counting at the
earliest of either data reception or an indication of a subaction gap. (For controllers that implement the IEEE1394a stan
dardized PHY/Link interface, the timer stops with the first of either a RECEIVE indication from the PHY, or a STATUS
transfer indicating a subaction gap.)

Aside from the difference in meaning of the timeStamp field when an OUTPUT_LAST hasbihenabled, all other
behaviors of the AT Request DMA context remain unchanged for the packet. For example, if an ack_busy* is returned by
the destination node, the AT Request DMA shall perform its normal retry behavior. Each retried transfer shall repeat the
ping timing, with the last attempt reported to the AT Request DMA command descriptor.

7.1.5.3.3 timeStamp value for Responses

Typically, asynchronous transmit response packets expire at a certain time and should not be transmitted after that time.
timeStamp value can be placed in the first OUTPUT_* descriptor for such packets to indicate the expiration time.

The timeStamp used for asynchronous transmit contains a 3-bit seconds field and a 13-bit cycle number which count
modulo 8000. Before an asynchronous response is put into the transmit FIFO, whether for the initial transmission attemp
or for a retry attempt, this timeStamp value is compared to the current cycleTimer. This comparison is used to determine
whether or not the packet will be sent or rejected as being too old.

Copyright © 1996-2000 All rights reserved. Page 77

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

The comparison is broken into two parts. The first compare is done on the seconds field of the timeStamp and the low
order three bits of the seconds field in the cycleTimer. The low three bits of cycle€liceBecondss subtracted from

the timeStamgycleSecondé§ield using three bit arithmetic. If the most significant bit of the subtraction is 1, then the
timeStamp is considered ‘late’ and the packet is rejected. If the most significant bit is 0 but the other two bits are not 0,
then the timeStamp is considered to be for some time in the ‘distant’ future and the packet can be sent. If the difference
is 0, then the timeStamp and cycleTimer are referring to the same second so the cycle number portion of the timeStamp
is compared to the cycle number portion of the cycleTimer to determine if the cycle is early, late or matches. This
comparison is done by subtracting the cycleTimer cycle number from the timeStamp cycle number. If the result is
negative, then the time for the packet has passed and the packet is rejected. If the difference is positive and the timeout
value is positive or zero, then the packet can be sent. This subtraction is signed so a sign bit is assumed to be prepended

to both cycle number values.

Table 7-7 — Results of timeStamp.cycleSeconds - cycleTimer.cycleSeconds

cycleTimer.seconds
timeStamp.secondg 000| 001 010 011 100 101 110 1p1
000 000/ 111(110(101|100| 011 01Q 001
001 001} 00¢111(110({101|100| 011 0ad
010 010 001 00(111{110|/101(100| 011
011 011} 010 001 00{111/110/101|100
100 100| 011} 010 001 00f{111|110(101
101 101(100| 011 010 001 00j111|110
110 110|101|100| 011] 010 001 00j111
111 111|110/101{100| 011 010 001 00p

NOTE: Shaded entries denote ‘late’ values.

For those entries in the table above which are 000, the cycledyrleCount field is subtracted from the
timeStampcycleCountfield. If the result is positive or 0, it indicates that the packet can be sent. If the result is negative
the packet cannot be sent and the status error code is set to evt_timeout.

Table 7-8 — timeStamp.cycleCount-cycleTime.cycleCount Example 1

timeStamp.cycleCount cycleTime.cycleCount difference action
14’hOFAO 14’hOF9E 14’h0002 send packet
14’hOFAO 14'hOF9F 14’h0001 send packet
14’hOFAO 14’hOFAO 14’h0000 send packat
14’hOFAO 14'hOFA1 14'h3FFF | reject packet

Table 7-9 — timeStamp.cycleCount-cycleTime.cycleCount Example 2

timeStamp.cycleCount cycleTime.cycleCount difference action
14’h1000 14’'hOFFE 14’'h0002 send packet
14’h1000 14'hOFFF 14'h0001 send packet
14’h1000 14’h1000 14’h0000 send packet
14’h1000 14’h1001 14'h3FFF reject packpt

Page 78 Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 7-10 — timeStamp.cycleCount-cycleTime.cycleCount Example 3

timeStamp.cycleCount cycleTime.cycleCount difference action
14’h0000 14’h0000 14’h0000 send packet
14’h0000 14’h0001 14’h3FFF reject packpt
14’h0000 14’h1000 14’h3000 reject packpt
14’h0000 14’h1001 14’h2FFF reject packpt
14’h0000 14’h1F3E 14’h20C2 reject packpt
14’h0000 14'h1F3F 14’h20C1 reject packpt

After a transmit packet has passed the timeStamp check, it may sit in the transmit FIFO for some time before the PHY
wins normal arbitration. The Host Controller does not re-examine the timeStamp while the packet waits, even if the
descriptor is still active because only part of the packet fits into the FIFO. This delay is usually brief, but could be over
200 cycles (over 25 milliseconds) in the case of a bus with 80% isochronous traffic and 63 nodes each sending maximun
size asynch packets as often as possible.

Software can compute the worst-case FIFO delay based on knowledge of the current node count and the current (c
maximum) isochronous load. Software can use this delay to compute an earlier expiration timeStamp to prevent late trans
mission due to FIFO delay. Using the maximum (not current) isochronous load is advisable, because additional isochro
nous reservations could be made while the packet is waiting in the transmit FIFO.

Because the Host Controller examines the timeStamp before the packet is loaded into the transmit FIFO, and because t
packet may remain in the FIFO for some period until the PHY attached to the Host Controller wins normal arbitration, it
is not possible to guarantee that the packet will not be transmitted after it expires. The maximum time the packet waits ir
the FIFO can be computed by software based on dynamic bus parameters, and this time can be factored into the packe
expiration timeStamp.

Copyright © 1996-2000 All rights reserved. Page 79

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

7.2 AT DMA context registers

Each AT DMA context (request and response) has two registers: CommandPtr and ContextControl. CommandPtr is used
by software to tell the Host Controller where the DMA context program begins. ContextControl is used by software to
control the context’s behavior, and is used by hardware to indicate current status.

7.2.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. The
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically
contiguous 16-byte blocks of command descriptors are pointed to by descriptorAddress.

Open HCI Offset 11’h18C - AT Request
Open HCI Offset 11’'h1AC - AT Response

31 30 29 28, 27 26 25 24‘23 22 21 20119 18 17 16‘15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O
e rrr-rrrrr-r T T

descriptorAddress [31:4] Z

Figure 7-6 — CommandPtr register format

When an Open HCI AT context that support out-of-order pipelining (see section 7.7) reports an error by setting
ContextControdead the CommandPtr register shall point to the descriptor furthest in the list (i.e. closest to the end) that
was fetched. This CommandPtr register implementation differs from other Open HCI contexts.

Refer to Section 3.1.2 for a complete description of the CommandPtr register.
7.2.2 ContextControl register (set and clear)

The ContextControlSeand ContextControlClearegisters contain bits that control options, operational state and status for

a DMA context. Software can set selected bits by writing ones to the corresponding bit€ antbtControlSetegister.
Software can clear selected bits by writing ones to the corresponding bits @ontextControlClearegister. It is not
possible for software to set some bits and clear others in an atomic operation. A read from either register will return the
same value.

Open HCI Offset 11’h180 (set) / 11’'h184 (clear) - AT Request
Open HCI Offset 11'h1A0 (set) / 11’h1A4 (clear) - AT Response

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0
P L

event

code
| | | |

]

run |
active
dead

wake

reserved-
undefined

Figure 7-7 — ContextControl (set and clear) register format

Page 80 Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 7-11 — ContextControl (set and clear) register description

Field rscu | Description

run rscu Refer to section 3.1.1.1 for an explanation of the ContextCoutroit.

wake rsu Refer to section 3.1.1.2 for an explanation of the ContextCuoratkebit.

dead ru Refer to section 3.1.1.4 for an explanation of the ContextCdetdbit. Open HCI AT

contexts that support out-of-order pipelining provide unique ContextCataealfunc-
tionality. See section 7.7 for more information on out-of-order AT pipelining.

active ru Refer to section 3.1.1.3 for an explanation of the ContextCautivebit. Open HCI AT
contexts that support out-of-order pipelining provide unique ContextCattiekfunc-
tionality. See section 7.7 for more information on out-of-order AT pipelining.

reserved undefined | ru This field is specified as undefined and may contain any value without impacting the
intended processing of this packet.

event code ru Following an OUTPUT_LAST* command, the received ack_ code or an “evt_" errgr code
is indicated in this field. Possible values are: ack_complete, ack_pending, ack_busy X,
ack busy A, ack_busy B, ack_data_error, ack_type_error, evt_tcode_err,
evt_missing_ack, evt_underrun, evt_descriptor_read, evt_data_read,evt_timeout,
evt_flushed and evt_unknown.

See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

7.2.2.1 Writing status back to context command descriptors

Upon OUTPUT_LAST* completion, bits 15-0 of the ContextControl register are written to the OUTPUT_LAST*
command’sxferStatusfield. When CommangferStatusis written to memory, the active bit is always one. If software
prepared the descriptor’s xferStaative bit to be zero, this change indicates that the descriptor has been executed, and
the xferStatus and timeStamp fields have been updated.

7.2.3 Bus Reset
7.2.3.1 Host Controller Behavior for AT

Upon detection of a bus reset, the Host Controller will cease transmission of asynchronous transmit packets. When thi
occurs there are two possibilities for AT packets that are left in the FIFO.

» Case 1 is when a bus reset occurs after the packet was transmitted but before an ack was received. For this catego
the link side of the Host Controller will return evt_missing_ack.

» Case 2 is when a bus reset occurs after the packet is placed in the FIFO but before it is transmitted. For this categor
the link side of the Host Controller may return evt_flushed.

When each context becomes stable (all data transfers have been halted and status writes have been completed), the F
Controller will clear the corresponding ContextCon#otive bit.

7.2.3.2 Software Guidelines

When a bus reset occurs, the link side will flush the asynchronous transmit FIFO(s) until the IntiERagetondition

is cleared. Software must make sure however that IntExesReseis not cleared until 1) software has cleared the
ContextControkun bits for both Asynchronous Transmit contexts, and 2) both Asynchronous Transmit contexts have
quiesced and both ContextContealtive fields are zero. This is to ensure that all queued asynchronous packets (with
potentially stale node numbers) are flushed. Once the contexts are no longer active, software may clear the busRes
interrupt condition, and hardware will stop flushing the asynchronous transmit FIFO(s). Before setting
ContextControkun for either context following a bus reset, software must ensure that Ndoedld is set and that
NodelDnodeNumbe(section 5.11) does not equal 63.

Copyright © 1996-2000 All rights reserved. Page 81

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

7.3 ack_data_error

If a transmit FIFO underrun occurs and an AT DMA context receives an ack_data_error or ack_busy* on the last transmit
attempt according to the ATRetries Register, the OUTPUT_LAST* descriptor for the packet is completed and the Host
Controller shall return evt_underrun for the event code. If a transmit FIFO underrun does not occur and an AT DMA
context receives an ack_data_error, the Host Controller shall return ack_data_error for the event code. This behavior is
illustrated in Figure 7-8.

7.4 AT Retries

The Host Controller will retry busied asynchronous transmit request and response packets based on the configuration of
the ATRetries register. If an AT context supports out-of-order pipelining, it shall only write busy status to a descriptor
when the appropriate ATRetries expiration occurs and the descriptor is retired with busy status per table 3-2. For a
detailed description of the ATRetries register see section 5.4.

Hardware implementations that support dual-phase retry shall ignore the retry code provided by software and shall insert
a retry code as appropriate with the current state of the retry protocol (retry_1, retry A or retry_B).

The following flow diagram illustrates the completion status and retry behavior for the AT DMA contexts.

Packet
Complete

Host bu
data read
error ?

No Report
received ack
value

AT FIFO
Underrun

No

P
v

Retries >0
?

received
ack_busy*
)

Yes
A
Report Report Retry Report
evt _data_read | received ack| packet evt_underrun
value transmission

Figure 7-8 — Completion Status and Retry Behavior

7.5 Fairness

Packets transmitted via the AT Request queue shall abide by the fairness protocol as supported by the Host Controller (see
section 5.9, “FairnessControl register (optional)”). AT response packets shall be transmitted according to the rules for
response packets specified in IEEE1394a.

Page 82 Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

7.6 AT Interrupts

Each asynchronous DMA context has one interrupt indication bit in the IntEvent register (section 6.1). For requests, it is
the reqTxCompletébit and for responses it is thespTxCompletdit. This interrupt indication bit will be set to one if a
completed OUTPUT_LAST* command has thield set to 2’b11, or if the field is set to 2’b01 and transmission of the
packet did not yield an ack_complete or an ack pending.

For Host Controllers that implement out-of-order AT pipelinireggTxCompleter respTxCompleténterrupt events may

be set when an AT context goes inactive. If after active is set the AT Request transmitter retries a paaeixtem-

plete shall be set when the AT Request context goes inactive. If after active is set the AT Response transmitter retries
packet therrespTxCompletshall be set when the AT Response context goes inactive. Thus, it is possiblecpTget
CompleteandrespTxCompletanterrupt events when riobits are set in the AT context programs.

7.7 AT Pipelining

For performance reasons it is desirable to overlap Open HCI DMA processing of the AT Request and AT Response
packets with packet transmission through the Open HCI Link. This overlap may be accomplished per Open HCI 1.0 with
speculative processing - the AT DMA prefetches descriptor blocks and packet data and provides the next-in-line
prefetched packet to the Link only when it receives transmit status that retires the current AT packet. The speculative
processing scheme provides for sequential consistency between the AT DMA context programs and the order AT packet
are transmitted on the 1394 medium. Sequential consistency can result in AT bottlenecks when AT packets transmitte
from the Open HCI result in numerous retried attempts.

Open HCI Release 1.1 implementations should support out-of-order pipelining of AT Request and AT Response packet:
where the order of AT packets transmitted on the 1394 medium may not be the same as the order of descriptor blocks |
the AT DMA programs. The Open HCI is not required to update AT descriptor blocks with status information in the same
order as an AT context program. If software needs to ensure sequential consistency for a set of packets, it shall not ha
more than one of these packets outstanding in the same context program at any given time.

Open HCI AT contexts that support out-of-order pipelining have unique implementations of Context@xditegldead,

and the CommandPtr register. ContextCordigilve shall remain set when the end of a context program is reached until

all outstanding fetched packets are retired. When software clears Context@aomttble Open HCI shall stop acquiring

new descriptors and keep ContextCon#ctive set until all outstanding fetched packets are retired. The outstanding
packets may be retried in this case. The Open HClI CommandPtr register points to the furthest fetched descriptor block i
the list when it clears ContextContiadtive as described in section 3.1.2.

When a bus reset is detected, the Open HCI shall stop acquiring new AT descriptors and keep Context@onse!.
until either valid pending completion status, evt_flushed, or evt_missing_ack has been written to all outstanding fetched
descriptors. The outstanding packets shall not be retried in this case.

When an out-of-order AT pipelining context experiences a condition for setting ContextQlmadotiescribed in

section 3.1.2.1 and section 13.2, it shall stop acquiring new descriptors and continue normally processing all outstanding
fetched descriptors to completion and write status. Once AT activity is complete for the dying context, it shall set
ContextControdead The Open HCI CommandPtr register points to the furthest fetched descriptor block in the list when
it sets ContextContralead.

Out-of-order pipelining requires special consideration for error recovery from software. When software traverses the
descriptor list for a dead AT context, it shall attribute ack_missing to those descriptors along the way that have zero statu
up to and including the descriptor pointed to by the CommandPtr register. Any regions pointed to by the zero status
descriptors and the descriptor memory itself are suspect in causing the error that resulted in the dead AT context. Softwal
may re-queue any descriptors after the descriptor pointed to by the CommandPtr register.

Copyright © 1996-2000 All rights reserved. Page 83

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

7.8 AT Data Formats
There are five basic formats for asynchronous data to be transmitted:

a) no-data packets (used for quadlet read requests and all write responses)

b) quadlet packets (used for quadlet write requests, quadlet read responses and block read requests)
c) block packets (used for lock requests and responses, block write requests and block read responses)
d) PHY packets

e) asynchronous stream packets (tcode 4’hA packets sent during asynchronous period)

All formats are shown below in three sections, asynchronous requests, asynchronous responses, and asynchronous
streams.

Note that packets to go out over the 1394 wire are constructed from these Host Controller internal formats, and are not
sent in the exact order as shown in the formats below. For example, destinationID is transmitted in the first quadlet, and
source ID is automatically provided and transmitted in the second quadlet.

7.8.1 Asynchronous Transmit Requests

7.8.1.1 No-data transmit

The no-data request transmit format is shown below. The first quadlet contains packet control information. The second
and third quadlets contain 16-bit destination ID and the 48-bit quadlet-aligned destination offset. Note that this packet

requires only three quadlets. Therefore when transmitted via an OUTPUT_LAST-Immediate descriptor, the descriptor’s
fourth quadlet is unused.

3130292827262524232221201918171d£3141312|1110 9 87 6 5 4313 2 1 0
o
el , 1394
% spd tLabel rt | tCode=4'n4] aserved
&
destinationID destinationOffsetHigh
destinationOffsetLow
Figure 7-9 — Quadlet read request transmit format
Table 7-12 — Quadlet read request transmit fields
field name bits | description
srcBusID 1 | Source bus ID selector. If clear, the high order 10 bits of the source_ID field of the trans-

mitted packet will be 10'h3FF. If set, the high order 10 bits of the source_ID fielf of
the transmitted packet will be Node_HDsNumbeisee section 5.11).

spd 3 | This field indicates the speed at which this packet is to be transmitted. 3'b000 F 100
Mbits/sec, 3'b001 = 200 Mbits/sec, and 3'b010 = 400 Mbits/sec, other values afe
reserved.

tLabel 6 | This field is the transaction label, which is used to pair up a response packet wlith its

corresponding request packet.

Page 84 Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 7-12 — Quadlet read request transmit fields (Continued)

field name bits | description

rt 2 | The retry code for this packet. Software should set rt to retry_X (2'b01). Hardwarge may
elect to ignore the software provided retry code and substitute an rt as appropriate for
the implemented retry mechanism. l.e., hardware implementing single phase refry can
use either the software provided rt or provide the equivalent 2’b01 constant, anfl
hardware implementing dual phase retry shall provide the proper retry 1, retry |A or
retry_B code upon transmission.

tCode 4 | The transaction code for this packet.

1394 reserved 4| Open HCI shall transmit these bits along as-is and shall not verify or modify them.

destinationID 16| This is the concatenation of the 10-bit bus number and the 6-bit node number|for the
destination of this packet.

destinationOffsetHigh, 16 | The concatenation of these two fields addresses a quadlet in the destination nqde’s

destinationOffsetLow 32 | address space. This address must be quadlet-aligned (modulo 4).

7.8.1.2 Quadlet transmit

The quadlet request transmit formats are shown below. The first quadlet contains packet control information. The secon
and third quadlets contain 16-bit destination ID and the 48-bit destination offset. For write requests the destination offse
shall be quadlet aligned, and the fourth quadlet is the quadlet data. For read requests the destination offset may be by
aligned, and the fourth quadlet contains the number of bytes requested in the read request.

31 30 29 28527 26 25 24§23 22 21 20519 18 17 16§15 14 13 12311 10 9 8§ 7 6 5 433 2 1 0
2 1394
(2]
é spd tLabel rt tCode=4'h0] reserved
%
destinationID destinationOffsetHigh

destinationOffsetLow

quadlet data

Figure 7-10 — Quadlet write request transmit format

Copyright © 1996-2000 All rights reserved. Page 85

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

3130292827262524232221201918171615141312'1110 9 87 6 5 4313 2 1 0
=)
é spd tLabel rt | tCode=4'h5 ,ég’gr‘\‘,ed
destinationID destinationOffsetHigh
destinationOffsetLow
dataLength 1394 reserved
Figure 7-11 — Block read request transmit format
Table 7-13 — Quadlet transmit fields
field name bits | description
srcBusID, spd, tLabel, rt, See Table 7-12.
tCode, 1394 reserved,
destinationID
destinationOffsetHigh, 16 | The concatenation of these two fields addresses memory in the destination node’s
destinationOffsetLow 32 | address space. For write requests this address shall be quadlet aligned. For read requests
this address may be byte aligned.
quadlet data 32| For quadlet write requests this field holds the data to be transferred.
datalLength 16 | The number of bytes requested in a block read request.

Page 86 Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

7.8.1.3 Block transmit

The block request transmit formats are shown below. The first quadlet contains packet control information. The seconc
and third quadlets contain the 16-bit destination node ID and the 48-bit destination offset. The fourth quadlet contains the

length of the data field and the extended transaction code (all zeros except for lock transactions). The block data, if any
follows the extended code.

3130292827262524|232221201918171615141312|1110 9 87 6 5 43 2 1 0
a)
% 1394
% spd tLabel it JtCode=4'hl] reserved
@
destinationID destinationOffsetHigh
destinationOffsetLow
dataLength 1394 reserved
block data
- -
T T
e e e e e e
1 o
I padding (if needed)
']

Figure 7-12 — Write request transmit format

Copyright © 1996-2000 All rights reserved. Page 87

Asynchronous Transmit DMA

1394 Open Host Controller Interface Specification / Release 1.1

Printe

d 1/10/00

3130292827262524|232221201918171615141312|1110 9 87 6 5 453 2 1 0
3 1394
é spd tLabel rt JtCode=4'h9 reserved
5
destinationID destinationOffsetHigh
destinationOffsetLow
datalLength extendedTcode
- -
- -
- block data (up to 4 quadlets) -
Figure 7-13 — Lock request transmit format
Table 7-14 — Block transmit fields
field name bits | description

srcBusID, spd, tLabel, rt,
tCode, 1394 reserved,
destinationID

See Table 7-12.

destinationOffsetHigh,
destinationOffsetLow

16
32

The concatenation of these two fields addresses memory in the destination node’s

address space. For block requests this address may have any alignment.

for this
of the

hd of the

datalLength 16| The number of bytes of data to be transmitted in this packet.

extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action tp be per-
formed with the data in this packet.

block data The data to be sent. If dataLength==0, no data should be written into the FIFO
field. Regardless of the destination or source alignment of the data, the first bytdg
block must appear in the leftmost byte of the first quadlet.

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the e
packet to guarantee that a whole number of quadlets is sent.

Page 88 Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

7.8.1.4 PHY packet transmit

The PHY packet transmit format is shown below. The first quadlet contains packet control information. Software should
set spd to S100 (3'b000) for compliance with 1394-1995 and IEEE1394a. The remaining two quadlets contain data that i
transmitted without any formatting on the bus. No CRC is appended to the packet, nor is any data in the first quadlet seni
This packet is used to send a PHY configuration, Link-on, and IEEE1394a Ping packets.

The AT Request context shall guarantee that no more than two quadlets of PHY packet data are transmitted, regardless

the context program instructions. If software requests more than two quadlets, then the first two quadlets are sent and tf
remaining quadlets are ignored.

31 30 29 28§27 26 25 24]23 22 21 20§19 18 17 16§15 14 13 12911 10 9 83 7 6 5 493 2 1 0

spd tcode=4’hE

PHY packet quadlet 1

PHY packet quadlet 2

Figure 7-14 — PHY packet transmit format

7.8.2 Asynchronous Transmit Responses
7.8.2.1 No-datatransmit

The no-data transmit format is shown below. The first quadlet contains packet control information. The second and third
quadlets contain 16-bit destination ID and the response code. Note that this packet requires only three quadlets. Therefo
when transmitted via an OUTPUT_LAST-Immediate descriptor, the descriptor’s fourth quadlet is unused.

write response transmit format

3130292827262524'232_22120191817161514131211109876543210
a) 1394
(2]
% spd tLabel rt tCode=4'h2] (eserved
7
L 1394
destinationID rCode reserved
1394
reserved

Figure 7-15 — Write response transmit format

Copyright © 1996-2000 All rights reserved. Page 89

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 7-15 — Write response transmit fields

field name bits | description

srcBusID 1 | Source bus ID selector. If clear, the high order 10 bits of the source_ID field of the trans-
mitted packet will be 10’h3FF. If set, the high order 10 bits of the source_ID fielf of
the transmitted packet will be Node_HDsNumbe(see section 5.11).

spd 3 | This field indicates the speed at which this packet is to be transmitted. 3'b000 F 100
Mbits/sec, 3'b001 = 200 Mbits/sec, and 3'b010 = 400 Mbits/sec, other values afe
reserved.

tLabel 6 | This field is the transaction label, which is used to pair up a response packet with its

corresponding request packet.

rt 2 | The retry code for this packet. Software should set rt to retry_X (2'b01). Hardwarge may
elect to ignore the software provided retry code and substitute an rt as appropriate for
the implemented retry mechanism. |.e., hardware implementing single phase rery can
use either the software provided rt or provide the equivalent 2’'b01 constant, anfl hard-
ware implementing dual phase retry should provide the proper retry_1, retry_A|or
retry_B code upon transmission.

tCode 4 | The transaction code for this packet.
1394 reserved 4| Open HCI shall transmit these bits along as-is and shall not verify or modify them.
destinationID 16| This is the concatenation of the 10-bit bus number and the 6-bit node number|for the

destination of this packet.

rCode 4 | Response code for this response packet.

7.8.2.2 Quadlet transmit

The quadlet read response transmit format is shown below. The first quadlet contains packet control information. The
second and third quadlets contain 16-bit destination ID and the 4-bit response code. The fourth quadlet is the quadlet data
for read responses.

31 30 29 28§27 26 25 24§23 22 21 20§19 18 17 16§15 14 13 12§11 10 9 837 6 5 493 2 1 0
g 1394
1]
é spd tLabel rt | tCode=4'h6] reserved
@
I 1394
destinationID rCode reserved
1394
reserved

quadlet data

Figure 7-16 — Quadlet read response transmit format

Page 90 Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 7-16 — Quadlet transmit fields

field name bits | description

srcBusID, spd, tLabel, rt, See Table 7-15.
tCode, 1394 reserved,
destinationID, rCode

guadlet data 32

For quadlet read responses, this field holds the data to be transferred.

7.8.2.3 Block transmit

The block response transmit formats are shown below. The first quadlet contains packet control information. The secon
and third quadlets contain the 16-bit destination node ID and the response code and reserved data. The fourth quad|

contains the length of the data field and the extended transaction code (all zeros except for lock transactions). The bloc
data, if any, follows the extended code.

31 30 29 28527 26 25 24§23 22 21 20,19 18 17 16J15 14 13 12311 10 9 8]J7 6 5 433 2 1 0
& 1394
é spd tLabel rt | tCode=4'h7} |oserved
@
_— 1394
destinationlD rCode reserved
1394
reserved
dataLength 1394 reserved
- block data -
/’ /’
F = = = = e e e e e e e e e e e e e = = = o
| o
I padding (if needed)
1

Figure 7-17 — Block read response transmit format

Copyright © 1996-2000 All rights reserved. Page 91

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

31 30 29 28y27 26 25 24§23 22 21 20,19 18 17 16]15 14 13 12311 10 9 87 6 5 443 2 1 O
g 1304
2 spd tLabel rt tCode=4'hB] reserved
destinationID rCode rgsgrz\l/ed
1394
reserved
dataLength extendedTcode
- block data (u -
p to 2 quadlets) -
- — -
Figure 7-18 — Lock response transmit format
Table 7-17 — Block transmit fields

field name bits | description
srcBusID, spd, tLabel, rt, See Table 7-15.
tCode, 1394 reserved,
destinationID, rCode
dataLength 16| The number of bytes of data to be transmitted in this packet.
extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action to be per-

formed with the data in this packet.
block data The data to be sent. Regardless of the destination or source alignment of the ¢lata, the

first byte of the block must appear in the leftmost byte of the first quadlet.
padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the epd of the

packet to guarantee that a whole number of quadlets is sent.

Page 92 Copyright © 1996-2000 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

7.8.3 Asynchronous Transmit Streams

An asynchronous stream packet is a packet in the format of an isochronous packet (e.g., using tcode = 4’hA) that i
transmitted during the asynchronous period. It is transmitted via the Asynchronous Transmit Request context and as sucl
it is governed by the same fairness rules as other asynchronous packets. This packet format consists of two head
quadlets (as specified in either the OUTPUT_MORE-Immediate or OUTPUT_LAST-Immediate descriptor) and an
optional data payload. The data payload in host memory is not required be aligned on a quadlet boundary. Padding |
added by the Host Controller if needed. The format is as follows.

31 30 29 2827 26 25 24|23 22 21 20§19 18 17 16j15 14 13 12311 10 9 8}f7 6 5 433 2 1 O
reserved spd tag chanNum tcode=4’hA sy
dataLength reserved
: : block data : :
[= e mm e mm e Em m mm Em Em Em Em e e e e N
|
I padding (if needed)
|
Figure 7-19 — Asynchronous stream packet format
Table 7-18 — Asynchronous stream packet fields
field name bits | description
spd 3 | This field indicates the speed at which this packet is to be transmitted. 3'b000 F 100
Mbits/sec, 3'b001 = 200 Mbits/sec, and 3'b010 = 400 Mbits/sec, other values afe
reserved.
tag 2 | The data format of the isochronous data (see IEEE 1394 specification)
chanNum 6 | The channel number this data is associated with.
tcode 4 | The transaction code for this packet.
sy 4 | Transaction layer specific synchronization bits.
dataLength 16| Indicates the number of bytes in this packet.
block data The data to be sent with this packet. The first byte of data must appear in the leftmost
byte of the first quadlet. The last quadlet should be padded with zeroes, if necessary.
padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the epd of the
packet to guarantee that a whole number of quadlets is sent.

Note that packets to go out over the 1394 wire are constructed from this Host Controller internal format, and are not sen
in the exact order as shown above. For example, spd, shown in the first quadlet, is not transmitted at all as part of th
asynchronous stream packet header.

Copyright © 1996-2000 All rights reserved. Page 93

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Page 94 Copyright © 1996-2000 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

8. Asynchronous Receive DMA

The Asynchronous Receive DMA controller performs the function of accepting packets for which there is no explicit
destination. This includes all packets which are accepted by the link module, but are not handled by any other receiv
DMA function. However this does not include cycle start packets. There are two asynchronous receive (AR) contexts, ar
AR Request context and an AR Response context. Each context uses a DMA context program to move such packets in
memory to be interpreted by the host processor software.

Since the collection of packets that must be handled by the AR contexts may be of widely varying lengths, each contex
operates irbuffer-fill mode in which multiple packets may be concatenated into the supplied buffers. Software is respon-

sible for parsing through these buffers and taking the appropriate action required for a packet, and hardware is required 1
make these buffers parsable.

This chapter describes the AR context program components, how the AR contexts are managed and how th
Asynchronous Receive controller operates. For information regarding receive FIFO implementation, refer to Section 3.3.

8.1 AR DMA Context Programs

The Asynchronous Receive DMA controller consists of two contexts for handling all asynchronous packets not handled
by the physical DMA controller. A context program is a list of DMA descriptors used to identify buffers in host memory
into which the Host Controller places received asynchronous packets.

The DMA descriptors are 16-bytes in length and must be aligned on a 16-byte boundary. There is one type of comman
descriptor used in an AR context program: INPUT_MORE.

8.1.1 INPUT_MORE descriptor

The INPUT_MORE command descriptor is used to specify a host memory buffer into which the AR controller will place
the received asynchronous packets from the Host Controller receive FIFO. It has the following format.

cmd= Js3 key= .)
; ; i
I4 hzl l $ gIo 1 1 %'IE 1 1 1 1 1 1 IrquC:IOL;lntl 1 1 1 1
dataAddress
1 1
branchAddress Z
1 1
xferStatus resCount

Figure 8-1 — INPUT_MORE descriptor format

Table 8-1 — INPUT_MORE descriptor element summary

Element Bits | Description

cmd 4 Software must set this field in all AR command descriptors to 4’h2 for INPUT_MQRE,
and hardware may assume that all AR descriptors are INPUT_MORE commands
This indicates to the AR controller that this descriptor contains a buffer address for gtoring
received asynchronous packets.

S 1 Status control. Software must set this field to 1. Hardware always writes status redardless
of the setting of this bit.
key 3 This field must be set to 3'b0.

Copyright © 1996-2000 All rights reserved. Page 95

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 8-1 — INPUT_MORE descriptor element summary

Element Bits | Description

i 2 Interrupt control. Valid values are 2’'b11 to generate an IntEARRQor IntEventARRS
interrupt when the descriptor is completed (see section 6.1), or 2'b00 for no interrupt. The
descriptor is completed when resCount is written zero by the Host Controller. Behgvior is
unspecified if set to 2'b01 or 2'b10.

Note that in addition to the per-descriptor (buffer) interrupts, interrupts can also be|gener-
ated on a per-packet basis for each complete packet received using the IRIGR&tENd
IntEventRSPktinterrupts described in section 6.1. These per-packet interrupts are|not
affected by the setting of théit in an INPUT_MORE descriptor.

b 2 Branch control. Software must set this field to 2’b11. Values of 2'b10, 2’b01, and 2’b00
will result in unspecified behavior.

reqgCount 16 Request count: The size in bytes of the input buffer pointed to by dataAddress. ReqCount
must be a multiple of 4 (representing a whole number of quadlets).

dataAddress 32 Host memory address of receive buffer. This address must be aligned on a quadlet
boundary.

branchAddress 28 16-byte aligned address of the next descriptor. A valid address must be provideg in this
field unless the Z field is 0.

z 4 Z may be set to 0 or 1. If this is the last descriptor in the context program, Z must|be set
to 0, otherwise it must be set to 1.

xferStatus 16 Written with ContextControl [15:0] whenever resCount is updated.

resCount 16 Residual count: while this descriptor is in-use by the Host Controller, resCount is ypdated

each time a packet is written to the receive buffer to indicate the number of bytes (out of
a max of reqCount) which have not been filled with received data.
For further information on resCount see section 8.4.2, “AR DMA Controller procespging.”

Note that the CommanmésCountand CommandferStatusfields are updated in an indivisible operation.

8.1.2 AR DMA descriptor usage

An asynchronous receive context program consists of one or more INPUT_MORE command descriptors. Each descriptor,
other than the final one, must provide a branchAddress with a Z value of 1 for the next block. The final command
descriptor must have a Z value of 0 to indicate the end of the context program. Section 3.2.1.2 describes a safe method by
which additional INPUT_MORE command descriptors may be appended to an active DMA program, regardless of
whether or not the AR DMA has reached the final command descriptor.

Software may only modify a (non-completed) descriptor that may have been prefetched if a) the descriptor’s current Z
value is 0, and b) only the branchAddress and Z fields of the descriptor are modified.

Page 96 Copyright © 1996-2000 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

8.2 bufferFill mode

Received asynchronous packets can be either solicited responses or unsolicited requests. Since software must be prepa
to handle several packets of variable size, the Asynchronous Receive DMA contexts operate in bufferFill mode. In buffer-
Fill mode, all received packets are concatenated into a contiguous stream of data. This data is then metered out int
buffers described by a DMA context program, filling each buffer completely. As each packet is put into a buffer, the
descriptor’'s resCount is updated to reflect the number of remaining bytes available in the buffer. Packets may straddls
multiple buffers in this mode (see packet 2 in the illustration below). In addition to the overall concept of bufferFill mode,
there are several nuances for Asynchronous receive which are described in detail in section 8.4.2.

MORE|s|key:0| I i |b:3| I reqCount
T H R A B R R R B B |d?ta|A|dd|re|SS| L
o branchAddress Z=1 paCket i paCk
xferStatus resCount=0
’MORE|s|key=OI I i |b=3| I reqCount
dataAddress
branchAddress Z=1 et 2 paCket 3
*I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Il 1 1 1 1 1 1 1 1 1 1 1 1 1 1
xferStatus resCount

Figure 8-2 — bufferFill receive mode

8.3 Asynchronous Receive Context Registers

The AR request context and AR response context each have a CommandPtr register and a ContextControl registe
CommandPtr is used by software to tell the Host Controller where the DMA context program begins. ContextControl is
used by software to control the context’s behavior, and is used by hardware to indicate current status.

8.3.1 AR DMA CommandPtr register

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. Th
least-significant bit of the CommandPtr register is used to encode a Z value. For each AR context (Request and Receive
Z may be either 1 to indicate that descriptorAddress points to a valid command descriptor, or O to indicate that there ar
no descriptors in the context program.

Refer to section 3.1.2 for a full description of the CommandPtr register.

Open HCI Offset 11’h1CC - AR Request
Open HCI Offset 11'h1EC - AR Response

31 30 29 28, 27 26 25 24‘23 22 21 20119 18 17 16‘15141312\11109 8/7 6 5 4,3 2 1 0

Figure 8-3 — CommandPtr register format

Copyright © 1996-2000 All rights reserved. Page 97

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

8.3.2 AR ContextControl register (set and clear)

The ContextControlSeand ContextControlClearregisters contain bits that control options, operational state, and status
for a DMA context. Software can set selected bits by writing ones to the corresponding bitsCiontertControlSet
register. Software can clear selected bits by writing ones to the corresponding bit€ontbetControlClearegister. It

is not possible for software to set some bits and clear others in an atomic operation. A read from either register will return
the same value and is referred to asGloatextControlStatusegister.

Open HCI Offset 11’'h1CO (set) / 11'h1C4 (clear) - AR Request
Open HCI Offset 11’h1EOQ (set) / 11’h1E4 (clear) - AR Response

31 30 29 28) 27 26 25 24/23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8 /7 6 5 4,3 2 1 0
[T
Spd event
code
L L
T
run |
active
dead
wake
Figure 8-4 — AR ContextControl (set and clear) register format
Table 8-2 — AR ContextControl (set and clear) register description
Field RSC | Description
run rscu Refer to section 3.1.1.1 for an explanation of the ContextCoutroit.
wake rsu Refer to section 3.1.1.2 for an explanation of the ContextCuoratkebit.
dead ru Refer to section 3.1.1.4 for an explanation of the ContextCdetxdbit.
active ru Refer to section 3.1.1.3 for an explanation of the ContextCautiok bit.
spd ru This field indicates the speed at which the last packet was received by this context} 3'b000

= 100 Mbits/sec, 3'b001 = 200 Mbits/sec and 3'b010 = 400 Mbits/sec. All other vglues
are reserved.

Software should not attempt to interpret the contents of this field while the
ContextControhctiveor ContextControlakebits are set.

event code ru The packet ack_ code or an “evt_" error code is indicated in this field. Possible values are:
ack _complete, ack_pending, ack_type_error, evt_descriptor_read, evt_data_writeg,
evt_bus_reset, evt_unknown, and evt_no_status.

See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

8.4 AR DMA Controller
8.4.1 Asynchronous Filter Registers

Software can control from which nodes it will recereguestpackets by utilizing the asynchronous filter registers. There

are two registers, one for filtering out all requests from a specified set of nodes (AsynchronousRequestFilter register) and
one for filtering out physical requests from a specified set of nodes (PhysicalRequestFilter register). The settings in both
registers have a direct impact on how the AR Request context is used, e.g., disabling only physical receives from a node
will cause all request packets from that node to be routed to the AR Request context buffer(s). The usage and interrela-
tionship between these registers is fully described in section 5.14, “Asynchronous Request Filters.” Asynchronous
responsepackets are never filtered.

Page 98 Copyright © 1996-2000 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

8.4.2 AR DMA Controller processing

The AR DMA controller writes the entire packet, as described in the Asynchronous Receive Data Formats section, into
memory for software to process. This includes the packet header and packet reception status. Data chaining across cont
commands is supported.

For the AR request context, commardCountshould always be set to at least the maximum possible packet length for
an asynchronous packet as specified in the max_rec field of the bus_info_blockyelgeadlets for the header and

trailer (2*(max_rec+1) + 20 bytes). This means a single packet can cross at most one buffer boundary. This requiremer
also makes it easier for the Host Controller implementation to combine asynchronous receive FIFOs (see section 3.3).

When the host software transmits an asynchronous request, it must first ensure that there is enough buffer space allocat
in the AR response context’s context program to receive the response packet including headers and timestamp. Failure
preallocate this space may result in the hardware discarding responses that arrive when the AR response context is out
descriptors even though ack_complete may have been sent to the source node.

Since the AR request context and AR response context buffers must always be parseable by software there are thri
essential requirements.

a) The Host Controller must write a packet into a buffer(s) by first writing the asynchronous packet header, followed
by the packet data, followed by a packet trailer.

b) Requests or responses with data-length errors, CRC errors, FIFO overrun errors or buffer overrun errors must nc
be presented to the software. Although the host memory buffers may have been written in anticipation of a good
packet, the xferStatus and resCount will not be updated. This in effect “backs out” the packet.

c) After each packet is written into the buffer(s), hardware must update the resCount for the INPUT_MORE
descriptor(s) for the buffer(s), to accurately reflect the number of unused bytes remaining.

Software must initialize resCount to the value of reqCount. Upon the first packet arrival into a buffer, the Host Controller
must write the appropriate residual count, based on (resCount - (packetHeaderLen + datalLength + statusquadlet)). No
that neither the header CRC nor data CRC quadlets are inserted into the buffer.

As depicted in figure 8-2, it is possible for a received packet to straddle multiple buffers. For the AR Request context, the
buffer size requirements (mentioned above) ensure that a packet can only straddle two buffers. However, the AR Respon:
context does not have a buffer size requirement and therefore AR response packets may straddle more than two buffel
To ensure that the receive buffers for a context remain parsable, hardware must follow the procedure shown below. (Firs
buffer refers to the buffer receiving the first byte of the packet or packet header, and final buffer refers to the buffer
receiving the last byte of the packet or packet trailer.)

1) After filling to the end of a buffer with a partial packet, advance to the next descriptor block and obtain the
next buffer (dataAddress), retaining all state for the first buffer as well as for the new buffer.

2) Continue writing packet bytes into the new buffer. If the end of the buffer is reached, advance to the next
buffer without updating xferStatus and retaining only cummulative interrupt state (section 6.4.1). Write the
remaining packet bytes into the final buffer (for the packet).

3) If there is no error: 1) write the trailer quadlet into the final buffer, 2) update xferStatus and resCount into the
final buffer's descriptor, and 3) update xferStatus and resCount into the first buffer's descriptor (where
xferStatus is the current value of ContextControl[15:0]). At that point the first buffer's state is no longer
needed.

4) |If thereis an error, then the packet must be ‘backed-out’ by reverting back to the previous state of the first
buffer (as saved earlier). XferStatus and resCount are not updateither descriptor.

By following these steps, the AR context buffers remain intact and can be parsed. Since interim buffers (those containing
an inner portion of one packet) for the AR Response context will not have their status updated, software must only use
resCount values when the corresponding xferStatus indicates the active bit is set to one. It follows from this that if the
xferStatusactivebit is set in a descriptor, then all prior descriptors have been filled.

Copyright © 1996-2000 All rights reserved. Page 99

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

8.4.2.1 AR DMA Packet Trailer

The trailer quadlet written by the Host Controller at the end of each packet has the following format.

31302928‘27262524‘23222120\1918171615141312\11109 8‘7 6 5 4,3 2 1 0

xferStatus timeStamp

Figure 8-5 — AR DMA packet trailer format

Table 8-3 — AR DMA trailer fields

field name bits | description

xferStatus 16| Written with ContextControl[15:0].

timeStamp 16| The low order 3 bits of cycleTinggcleSecondand the full 13 bits of
cycleTimercycleCountat some time during receipt of the packet.

8.4.2.2 Error Handling

When the AR DMA receives a packet with valid header and a failed data CRC check or data length error, the Host
Controller shall respond with a “busy” acknowledgment (e.g. ack_busy X if dual phase retry does not apply). Since an
error condition is not known until all data (plus data CRC) has arrived, many “corrupted” data bytes may have been
moved into an AR DMA buffer by the time the error situation is discovered. In this circumstance, hardware is required to
halt its writing of the packet into the AR DMA buffer without updating the resCount field. By not advancing the residual
count location, it will appear as though the packet never was written into the AR DMA buffer at all.

Similarly, if a bus reset occurs after a packet has been received but before the ack is sent, the packet may be “backed-out”
of the buffer(s) as described for the error conditions above.

If an AR DMA context has an unrecoverable error, the Host Controller shall continue to unload the FIFO even though the
context is dead.

Page 100 Copyright © 1996-2000 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

8.4.2.3 Bus Reset Packet

To assist software in determining which asynchronous request packets arrived before and after a bus reset, necessary sii
node numbers may have changed, the Host Controller inserts a synthesized PHY packet into the AR DMA Reques
Context buffer (if active) as soon as a bus reset condition is detected. This packet has the following format.

31 30 29 28427 26&24'232& 20§19 18 17 16I15 14 13 12911 10 9 81 7 6 5 Ag3 2 1 0

tcode=4'hE 4’'h0

selfIDGeneration

reserved undefined 3'h0 event = 5'h09 reserved undefined

Figure 8-6 — AR Request Context Bus Reset packet format

Table 8-4 — AR Request Context Bus Reset packet description

Field bits | a) Description
tcode 4 Set to 4’hE to indicate a PHY packet.
selfIDGeneration 8 The selfIDCoustlfIDGeneratiorvalue at the time this packet is created.

reserved undefined | 8 +This field is specified as undefined and may contain any value without impacting the
16 |intended processing of this packet.

eventCode 5 A value of 5’h09 (evt_bus_reset) identifies this as a synthesized bus_reset packet.

Software can distinguish the bus-reset packet from authentic PHY packets by the value of eventCode which is set
evt_bus_reset. Software can further interpret and coordinate received asynchronous packets across multiple bus resets
using the selfIDGeneration number provided in the bus-reset packet. Since the bus-reset packet is fabricated when a b
reset is initially detected, the selfIDGeneration number is for the new (not previous) generation and will be the same a:
the selfIDGeneration number in the SelfIDCount register as well as in the selfID buffer.

If more than one bus reset has occurred without any intervening packets, then only the “last” one is required to result in «
synthesized bus-reset packet.

If the input FIFO is full when a bus reset occurs, the link side of the FIFO must later insert the bus-reset packet when
space becomes available. If the AR DMA request context does not have enough buffer space for the bus-reset packet, t
packet shall be synthesized once buffer space becomes available.

The bus reset interrupt (IntEvemisResétis independent of the time when this packet goes from the FIFO into a host
buffer. This interrupt shall occur as soon as possible after a bus reset has been detected. The bus-reset packet is
different from any other packet going into the AR Request buffer in that IntR@Rktwill be generated like it would

for other packets.

Copyright © 1996-2000 All rights reserved. Page 101

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

8.5 PHY Packets

PHY packets will be received by asynchronous receive DMA if LinkContkdthyPktis 1, and will be received by the

AR Request context. PHY packets in the AR Request context will include the PHY packet’s “logical inverse” quadlet
which must be verified by software to be the logical inverse of the previous quadlet. The format of this packet is shown in
section 8.7.1.4.

A packet is treated as a PHY packet if it is two quadlets and fails the CRC check. This includes any Self-ID packet that
arrives outside of the Self-ID phase of bus initialization.

8.6 Asynchronous Receive Interrupts

There are two interrupts for each context (request and response) that software can use to gauge the usage of the receive
buffers. If software needs to be informed of the arrival of each packet being sent to the context buffers, it can use the
RQPkt or RSPkt interrupts in the IntEvent register (see section 6.1). If software needs to be informed of the completion of

a buffer, it can set the context commarfikld to 2’b11, which will trigger either the ARRQ or ARRS interrupt in the
IntEvent register. An ARRQ or ARRS interrupt shall be generated on behalf of an asynchronous receive context if a
packet completes and any of the buffers it spans haveltite set to 2’b11 in their corresponding descriptor blocks.

Page 102 Copyright © 1996-2000 All rights reserved.

Asynchronous Receive DMA

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

8.7 Asynchronous Receive Data Formats

The Host Controller shall only receive PHY packets or packets which have tCodes that are defined by an approved IEEL
1394 standard. All other packets shall be dropped.

There are four basic formats for asynchronous data to be received:

a) no-data packets (used for quadlet read requests and all write responses)
b) quadlet packets (used for quadlet write requests, quadlet read responses, and block read requests)
c) block packets (used for lock requests and responses, block write requests, and block read responses)

d) PHY packets

The names and descriptions of the fields in the received data are given in table 8-5.

Table 8-5 — Asynch receive fields

ode-

ith its

em.

s space.

D be per-

ita, the

of the

D

field name bits | description

destinationID 16| This field is the concatenation of busNumber (or all ones for “local bus”) and n
Number (or all ones for broadcast) for this node.

tLabel 6 | This field is the transaction label, which is used to pair up a response packet W
corresponding request packet.

rt 2 | The retry code for this packet. 00=retryl, Ol=retryX, 10=retryA, 11=retryB

tCode 4 | The transaction code for this packet.

1394 reserved 4| Open HCI shall transmit these bits along as-is and shall not verify or modify t

sourcelD 16| This is the node ID (bus number + node number) of the sender of this packet.

destinationOffsetHigh, 16 | The concatenation of these two fields addresses a quadlet in this node’s addres

destinationOffsetLow 32 | This address must be quadlet-aligned (modulo 4).

rCode 4 | Response code for response packets.

quadlet data 32 For quadlet write requests and quadlet read responses, this field holds the data received.

datalLength 16| The number of bytes of data to be received in a block packet.

extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action t
formed with the data in this packet.

block data The data received. Regardless of the destination or source alignment of the da
first byte of the block will appear in the leftmost byte of the first quadlet.

padding If the dataLength mod 4 is not zero, then bytes have been added onto the end
packet by the transmitting node to guarantee that a whole number of quadlets i
received.

xferStatus 16| Written with ContextControl[15:0].

timeStamp 16| The low order 3 bits of cycleTinsgcleSecondand the full 13 bits of

cycleTimercycleCountat some time during receipt of the packet.

Copyright © 1996-2000 All rights reserved.

Page 103

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

8.7.1 Asynchronous Receive Requests
8.7.1.1 No-datareceive

The no-data receive format is shown below. The first quadlet contains the destination node ID and the rest of the packet
header. The second and third quadlets contain 16-bit source ID and the 48-bit, quadlet-aligned destination offset. The last
quadlet contains packet reception status.

31 30 29 28) 27 26 25 24I23 22 21 20319 18 17 16§15 14 13 12311 10 9 8} 7 6 5 433 2 1 O

L 1394
destinationID tLabel rt JtCode=4'h4 reserved

sourcelD destinationOffsetHigh

destinationOffsetLow

xferStatus timeStamp

Figure 8-7 — Quadlet read request receive format
8.7.1.2 Quadlet Receive

The quadlet receive formats are shown below. The first quadlet contains the destination node ID and the rest of the packet
header. The second and third quadlets contain 16-bit source ID and the 48-bit, quadlet-aligned destination offset. The

fourth quadlet is the quadlet data for write quadlet requests, and is the data length and reserved for block read requests.
The last quadlet contains packet reception status.

31 30 29 2827 26 25 24I23 22 21 20p19 18 17 16§15 14 13 12911 10 9 8} 7 6 5 433 2 1 0

L 1394
destinationID tLabel rt JtCode=4'h0O] reserved

sourcelD destinationOffsetHigh

destinationOffsetLow

quadlet data

xferStatus timeStamp

Figure 8-8 — Quadlet write request receive format

Page 104 Copyright © 1996-2000 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

31 30 29 28) 27 26 25 24I 23 22 21 2019 18 17 16|

15 14 13 12§11 10 O 817 6 5 433 2 1 0
o 1394
destinationID tLabel rt JtCode=4'h5 reserved

sourcelD destinationOffsetHigh
destinationOffsetLow
datalLength résS(?rz\l/ed
xferStatus timeStamp

Figure 8-9 — Block read request receive format

Copyright © 1996-2000 All rights reserved.

Page 105

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

8.7.1.3 Blockreceive

The block receive formats are shown below. The first quadlet contains the destination node ID and the rest of the packet
header. The second and third quadlets contain the 16-bit source ID and the 48-bit destination offset. The fourth quadlet
contains the length of the data field and the extended transaction code (all zeros except for lock transactions). The block
data, if any, follows the extended Tcode. The last quadlet contains packet reception status.

31 30 29 28527 26 25 24|23 22 21 20§19 18 17 16§15 14 13 12§11 10 9 887 6 5 433 2 1 0
1394
destinationID tLabel rt JtCode=4'h1] reserved
sourcelD destinationOffsetHigh
destinationOffsetLow
dataLength 1394 reserved
- -
- -
block data
T T
e e e e e
I padding (if needed)
'l
xferStatus timeStamp

Figure 8-10 — Block write request receive format

Page 106

Copyright © 1996-2000 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

31 30 290 28527 26 25 24|23 22 21 20910 18 17 1616 14 13 12§11 10 9 8§ 7 6 5 433 2 1 0
1394
destinationID tLabel rt JtCode=4'h9] reserved
sourcelD destinationOffsetHigh
destinationOffsetLow
datalLength extendedTcode
- -
- block data -
T T
P = = = == e e e e e e e e e e e e = = o
1 o
I padding (if needed)
'l
xferStatus timeStamp

Figure 8-11 — Lock request receive format
8.7.1.4 PHY packet receive

The PHY packet receive format is shown below. The first quadlet contains a synthesized packet header with a tCode c
4'hE. The second quadlet contains the PHY quadlet and the third quadlet contains the inverse of the previous quadle
Software is required to verify the integrity of the second quadlet by checking it against the third quadlet. The final (fourth)
guadlet contains the packet trailer. The value of xferSeatestshall be ack_complete for PHY packets.

31 30 29 28327 26 25 24§23 22 21 20519 18 17 16§15 14 13 12311 10 9 8} 7 6 5 4533 2 1 0

tcode=4'hE 4’'h0

PHY packet first quadlet

PHY packet second quadlet

xferStatus timeStamp

Figure 8-12 — PHY packet receive format

Copyright © 1996-2000 All rights reserved. Page 107

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

8.7.2 Asynchronous Receive Responses
8.7.2.1 No-datareceive
The no-data receive format is shown below. The first quadlet contains the destination node ID and the rest of the packet

header. The second and third quadlets contain 16-bit source ID and the response code. The last quadlet contains packet
reception status.

31302928'27262524|23222120|191817161514131_2|£10 9 87 6 5 433 2 1 0
o 1394
destinationID tLabel rt JtCode=4'h2 reserved
1394
sourcelD rCode reserved

1394
reserved

xferStatus timeStamp

Figure 8-13 — Write response receive format
8.7.2.2 Quadlet Receive

The quadlet receive format is shown below. The first quadlet contains the destination node ID and the rest of the packet
header. The second and third quadlets contain 16-bit source ID and the response code. The fourth quadlet is the quadlet
data for read responses. The last quadlet contains packet reception status.

31 30 29 28527 26 25 24|23 22 21 20p19 18 17 1615 14 13 12311 10 9 8] 7 6 5 433 2 1 0
L 1394
destinationID tLabel rt JtCode=4'h6] reserved
1394
sourcelD rCode reserved
1394
reserved
quadlet data
xferStatus timeStamp

Figure 8-14 — Quadlet read response receive format

Page 108 Copyright © 1996-2000 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

8.7.2.3 Blockreceive

The block receive formats are shown below. The first quadlet contains the destination node ID and the rest of the packe
header. The second and third quadlets contain the 16-bit source ID and the response code and reserved data. The fou
quadlet contains the length of the data field and the extended transaction code (all zeros except for lock transactions). Tt

block data, if any, follows the extended Tcode. The last quadlet contains packet reception status.

31 30 29 28J27 26 25 24|23 22 21 20§19 18 17 16§15 14 13 12§11 10 9 87 6 5 413 2 1 O
1394
destinationID tLabel rt JtCode=4'h7 reserved
1394
sourcelD rCode reserved
1394
reserved
dataLength 1394 reserved
o o
- block data -
T T
F = = = = e e e e e e e e e e e e e = = = o
1 o
I padding (if needed)
1
xferStatus timeStamp

Figure 8-15 — Block read response receive format

Copyright © 1996-2000 All rights reserved.

Page 109

Asynchronous Receive DMA

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

31 30 29 28§27 26 25 24|23 22 21 20§19 18 17 16]15 14 13 12§11 10 9 8] 7 6 5 433 2 1 0
1394
destinationID tLabel rt JtCode=4'nB| reserved
1394
sourcelD rCode reserved
1394
reserved
dataLength extendedTcode
- -
- -
block data
T T
P ™ = = == e e o e e e e o e e e e = = = = o
1 o
I padding (if needed)
1
xferStatus timeStamp

Figure 8-16 — Lock response receive format

Page 110

Copyright © 1996-2000 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

9. Isochronous TransmitDMA

The Isochronous Transmit DMA (IT DMA) controller has a required minimum of four and an implementation maximum
of 32 isochronous transmit contexts. Each context is controlled by a DMA context program. Each IT DMA context will
transmit data for a single isochronous channel.

9.1 IT DMA Context Programs

For isochronous transmit DMA, a context program is a list of DMA command descriptors used to identify buffers in host
memory from which the Host Controller transmits packets onto the 1394 bus. The descriptors are 16- and 32-bytes ir
length and must be aligned on a 16-byte boundary. There are five IT DMA command descriptors: OUTPUT_MORE,
OUTPUT_MORE-Immediate, OUTPUT_LAST, OUTPUT_LAST-Immediate and STORE_VALUE.

9.1.1 IT DMA command descriptor overview

There are two components to a 1394 isochronous packet, the packet header and the packet data, and there are many w
in which software may need to organize this information in host memory. To accommodate the variety of packet
organization, there are four IT DMA descriptor commands used to instruct the Host Controller on how to assemble the
packets, and one descriptor command for writing a quadlet into host memory for software tracking purposes.

If a packet has two or more data fragments an OUTPUT_MORE-Immediate and possibly some OUTPUT_MORE
commands are used. The OUTPUT_MORE-Immediate command is used to specify the packet header, and eac
OUTPUT_MORE command allows for the specification of one packet fragment.

To indicate the end of a packet, either the OUTPUT_LAST or OUTPUT_LAST-Immediate command must be used. The
OUTPUT_LAST command allows for the specification of one data fragment, and the OUTPUT_LAST-Immediate is used

to specify a packet solely consisting of an isochronous packet header. Unlike the OUTPUT_MORE commands, the
OUTPUT_LAST commands indicate to the Host Controller that there is no more data to send for a packet.

The STORE_VALUE command descriptor provides a mechanism for software to monitor progress on a context without
using interrupts. This command will write a quadlet to a specified host memory location.

Copyright © 1996-2000 All rights reserved. Page 111

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

9.1.2 OUTPUT_MORE descriptor

cmd=0 key= 2'p0

dataAddress

reqCount

Figure 9-1 — OUTPUT_MORE command descriptor format

Table 9-1 — OUTPUT_MORE descriptor element summary

Element Bits | Description

cmd 4 Set to 4'h0 for OUTPUT_MORE.
Identifies one data fragment used to build the packet.

key 3 This field must be set to 3'h0.

b 2 Branch control. Must be set to 2'b00. Behavior is unspecified if set to 2’'b01, 2’b10 or
2'b11.

reqCount 16 Request count. The size of the specified buffer in bytes pointed to by dataAddress.

dataAddress 32 Address of transmit buffer. dataAddress has no alignment restrictions.

The OUTPUT_MORE descriptor is used to specify one data fragment for the packet. It shall not be used for specifying
the packet header, and must be preceded by an OUTPUT_MORE-Immediate or another OUTPUT_MORE.

Page 112 Copyright © 1996-2000 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

9.1.3 OUTPUT_MORE-Immediate descriptor

cmd=0 Ié(?r){z: i [2’b0

reqCount=8

skipAddress Z

first quadlet

second quadlet

Figure 9-2 — OUTPUT_MORE-Immediate descriptor format

Table 9-2 — OUTPUT_MORE-Immediate descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h0 for OUTPUT_MORE-Immediate.

key 3 This field must be set to 3'h2.

i 2 Interrupt control. Valid values are 2’b00 and 2'b11. Behavior is unspecified if set to P’b01

or 2’b10. When set to 2'b11, an IsochTx interrupt shall be generated when the skipAd-
dress in this descriptor is taken. When programmed to 2'b00 no interrupt shall be[gener-
ated when the skipAddress is taken.

b 2 Branch control. Must be set to 2’'b00. Behavior is unspecified if set to 2’b01, 2'b10 or
2'b11.
regCount 16 Must be set to 8 to accommodate the IT packet header. Using any other value yields

unspecified results.

skipAddress 28 16-byte aligned address of the next descriptor to be used if a missed cycle is defected.
Used only within the first command descriptor in a descriptor block. The first command
must either have a valid skipAddress, or must set the Z field to 0.

4 4 Used to indicate the number of descriptors needed fakipeescriptor block. Z may bg
avalue from O to 8. A zero indicates there is no skipAddress, and the DMA for this dontext
stops. A value of 1 to 8 indicates that there are 1 to 8 descriptors used in the skip|packet.

first quadlet 32 Quadlets to be inserted into the isochronous transmit FIFO for the isochronous packet
second quadlet 32 header (see section 9.6).

The OUTPUT_MORE-Immediate descriptor shall be used, and shall only be used, to specify the isochronous header fo
a non-zero data length packet. This is an efficient way for software to provide the packet header information since the dat
is built into the descriptor and does not need to be fetched from a separate memory buffer.

OUTPUT_MORE-Immediate command descriptors are 32 bytes in length regardless of the value of reqCount, and are
counted as two 16-byte aligned blocks when calculating the Z value.

Copyright © 1996-2000 All rights reserved. Page 113

Isochronous Transmit DMA

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

9.1.4 OUTPUT_LAST descriptor

cmd=1 |s| K&Y= i |p=
| 1 | $ hIO 1 ! 2 911 1 | 1 1 | 1 IrquC:IOL;IntI 1 | 1 | 1
dataAddress
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 1 | 1
skip or descriptor branch Address z
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 1 | 1 | 1 | 1 | 1 1 | 1
xferStatus timeStamp

Figure 9-3 — OUTPUT_LAST command descriptor format

Table 9-3 — OUTPUT_LAST descriptor element summary

Element

Bits

Description

cmd

4

Set to 4’h1 for OUTPUT_LAST.
Each command identifies one data fragment used to build the packet. OUTPUT_L
used to signify the end of the isochronous packet to be transmitted.

A\ST is

Status control. If set to one, xferStatus and timeStamp will be updated upon desd
completion. If set to zero, neither field is updated.

riptor

key

This field must be set to 3’'h0.

Interrupt control. Valid values are 2'b00 and 2'b11. Behavior is unspecified if set to
or 2'b10. When set to 2'b11, an IsochTx interrupt shall be generated when the deq
is completed (see section 6.1) or the skipAddress in this descriptor is taken. Whe
2'b00, no interrupt shall be generated upon completion of this descriptor or when
skipAddress in this descriptor is taken.

P'b01
criptor
N set to
the

Branch control. This field must be set to 2’b11 to branch to the location specified
branchAddress field. Behavior is unspecified for all other values.

n the

reqCount

16

Request count: The size of the buffer in bytes pointed to by dataAddress.

dataAddress

32

Address of transmit buffer. dataAddress has no alignment restrictions.

branchAddress

skipAddress

28

16-byte aligned address of the next descriptor. Used only within OUTPUT_LAS]
commands.

|'*

16-byte aligned address of the next descriptor to be used if a missed cycle is def
Used only within the first command descriptor in a descriptor block. OUTPUT_LA
may only be the first descriptor in a descriptor block when reqCount is 0.

ected.
ST

Used in OUTPUT_LAST to indicate the number of descriptors needed imexihe
descriptor block. Z may be a value from 0 to 8. A zero indicates this is the last desg|
in the list for this IT DMA context. A value of 1 to 8 indicates that there are 1 to 8
descriptors used in the next descriptor block.

criptor

xferStatus

16

Written with ContextControl [15:0] after the descriptor is processed if s = 1.

timeStamp

16

Contains the three low order bits of cycleSeconds and all 13 bits of cycleCount,
written when xferStatus is written. TimeStamp indicates the cycle for which the IT
controller queued the transmission of this packet (if any). See section 5.13, “Isoch

and is
DMA
fonous

Cycle Timer Register,” for information about cycle* fields.

The OUTPUT_LAST descriptor is used to indicate the end of a packet. If reqCount is non-zero, this specifies the last data

fragment for the packet. It shall not be used for specifying the packet header.

An OUTPUT_LAST with reqCount=0 is used to indicate that no paisk&d be sent for the current cycle. The IT DMA
controller will advance the context to the next descriptor block (branchAddress) for the next cycle. An OUTPUT_LAST
with a reqCount=0 shall not be preceded by any OUTPUT_MORE* descriptors in the descriptor block.

Page 114

Copyright © 1996-2000 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

9.1.5 OUTPUT_LAST-Immediate descriptor

cmd=1|s 'é?ﬁ’; i 2%1 reqCount = 8
skip and descriptor branch Address Z
xferStatus timeStamp

first quadlet

second quadlet

Figure 9-4 — OUTPUT_LAST-Immediate command descriptor format

Table 9-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits | Description

cmd, s Same as in Table 9-3.

key 3 This field must be set to 3'h2.

i,b Same as in Table 9-3.

reqCount 16 Must be set to 16’h0008 to accommodate the IT packet header. Using any other|value
yields unspecified results.

branchAddress 28 16-byte aligned address of the next descriptor. Used only within OUTPUT_LAST*
commands.

skipAddress 16-byte aligned address of the next descriptor to be used if a missed cycle is defected.
Used only within the first command descriptor in a descriptor block.

Z, xferStatus, Same as in Table 9-3.

timeStamp

quadlets 32*4| The first and second quadlets are used to specify the 2 quadlets required for thelisochro-
nous packet header. (See section 9.6).

The OUTPUT_LAST-Immediate descriptor must be used, and must only be used, to specify the isochronous header for
packet with zero data bytes. OUTPUT_LAST-Immediate command descriptors are 32-bytes in length regardless of the
value of reqCount and are counted as two 16-byte aligned blocks when calculating the Z value.

Copyright © 1996-2000 All rights reserved. Page 115

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

9.1.6 STORE_VALUE descriptor

The STORE_VALUE command descriptor instructs the Host Controller to write a specified 32-bit value to a specified
host memory location. If used, STORE_VALUE must be the first command descriptor in a descriptor block, and only one
is permitted per descriptor block. STORE_VALUE must not be the only descriptor in a descriptor block and shall be
followed by one or more OUTPUT_* descriptors. It has the following format.

cmd=8 I‘%‘?ﬁ'g

i storeDoublet

dataAddress

skipAddress z
| |

Figure 9-5 — STORE_VALUE descriptor

Table 9-5 — STORE_VALUE descriptor element summary

Element Bits | Description

cmd 4 Set to 4'h8 for STORE_VALUE.

key 3 This field must be set to 3'h6.

i 2 Interrupt control. Valid values are 2'b00 and 2’b11. Behavior is unspecified if set to P'b01

or 2'b10. When set to 2’b11, an IsochTx interrupt shall be generated when the skipAd-
dress in this descriptor is taken. When programmed to 2'b00 no interrupt shall be[gener-
ated when the skipAddress is taken.

storeDoublet 16 16-bit value to be stored into the quadlet aligned dataAddress upon execution of this com-
mand. StoreDoublet is written as a 32 bit value, where bits 31:16 are 0’s and bits 1%:0 con-
tain the storeDoublet value provided in the descriptor.

dataAddress 32 Quadlet aligned host memory address into which storeDoublet (padded to 32) bjits is
written.
skipAddress 28 16-byte aligned address of the next descriptor to be used if a missed cycle is detegcted. The

skipAddress must be valid or the Z field must be 0. If the skip address is used, the store
action specified by this descriptor wilbt be executed.

z 4 Used to indicate the number of descriptors needed fakipdescriptor block. Z may bg
avalue from O to 8. A zero indicates there is no skipAddress, and the DMA for this dontext
stops. A value of 1 to 8 indicates that there are 1 to 8 descriptors used in the skip|packet.

The STORE_VALUE command provides a mechanism for software to monitor a context’s progress independent of using
interrupts. For example a running IT context program could perform a STORE_VALUE periodically into a memory host
location where software would look to determine the latest IT DMA context progress.

Page 116 Copyright © 1996-2000 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

9.1.7 IT DMA descriptor usage

The Z value is used by the Host Controller to enable several descriptors to be fetched at once, for improved efficiency. 2
values must always be encoded correctly. The contiguous descriptors described by a Z value ardesaligataa block
The following table summarizes all legal Z values:

Table 9-6 — Z value encoding

Z value Use

0 Indicates that the current descriptor is the last descriptor in the context program

1-8 Indicates that starting at descriptorAddress, there are one to eight 16-byte aligngd
physically contiguous descriptors and descriptor components.

9-15 reserved

Each isochronous transmit descriptor block for a packet shall be specified with the command descriptors according to th
following rules:

* A maximum of 8 command descriptors may be used.

* Only one STORE_VALUE may be used, and it must be the first descriptor in a descriptor block.

* If STORE_VALUE is used, it shall be followed by at least one OUTPUT_* descriptor, and the Z value for the
descriptor block shall be between 2-8 inclusively.

» If the packet dataLength is not zero, one OUTPUT_MORE-Immediate must be used, followed by zero to five
OUTPUT_MORE's, followed by one OUTPUT_LAST.

 If the packet dataLength is zero, one OUTPUT_LAST-Immediate must be used.

e If no packet is to be sent during a cycle, one OUTPUT_LAST with reqCount=0 must be used and shall not be
preceded by any other OUTPUT_* descriptor.

The isochronous packet header must be specified using a *-Immediate command. The OUTPUT_LAST* command mus
have a branch control value of 2’'b11. All other commands must have a branch control value of 2’b00. Depending on the
aggregate number of bytes being transmitted for one descriptor block, hardware may assist with padding. If the sum of a
reqCounts modulo 4 is 0, then padding is not necessary. If the sum of all reqCounts module 4 is not 0, then hardware wil
insert padding up to a quadlet boundary.

To indicate the end of the context program, all IT DMA context programs must use an OUTPUT_LAST or
OUTPUT_LAST-Immediate command with a branch (b) value of 2’'b11 (branch always) and a Z value of O to indicate the

end of the program. A program which ends can be appended to while the DMA runs, even if the DMA has already
reached the last descriptor.

The first command in an isochronous packet descriptor block must have a skipAddress which points to the descriptor tc

branch to if this packet cannot be transmitted (typically due to a lost cycle). The value of the Cdnfielthth that
descriptor does not affect a skip branch.

The use of many OUTPUT_MORE* commands to describe a single packet will generally cause extra fetch latencies, a
the Host Controller fetches payload buffers from different parts of memory. These latencies may differ for each Host
Controller implementation, bus, and host memory architecture. Software is expected to construct IT DMA context
programs with a sufficiently low number of OUTPUT_MORE* commands so that the Host Controller can satisfy applica-
tion-specific latency requirements.

IT DMA context programs must contain exactly one descriptor block to be processed per cycle. Each descriptor block
must be identified with an accurate Z value, both when the program is started, and on each branch within the program
Each descriptor block must end with an unconditional branch to the next descriptor block, even if the next block follows
immediately in consecutive memory. (The branch enables the IT DMA to learn the Z value for the next descriptor block).
Each descriptor block must begin with a command that contains a branch to the skipAddress (also with a Z code).

Copyright © 1996-2000 All rights reserved. Page 117

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Some applications of isochronous transfer do not transfer a packet on every isochronous cycle. Therefore the IT DMA
will sometimes not transmit a packet for one or more channels. Within a context program, a non-transmit cycle is indi-
cated by a descriptor block whose only transfer command is an OUTPUT_LAST with a reqCount of zero. (This is not a
zero-length packet, which would be sent with an OUTPUT_LAST-Immediate.)

9.2 IT Context Registers
Each isochronous transmit context consists of two registers: CommandPtr and IT ContextControl. CommandPtr is used by

software to tell the IT DMA controller where the DMA context program begins. IT ContextControl is used by software to
control the context’s behavior, and is used by hardware to indicate current status.

9.2.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. The
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically
contiguous descriptors are pointed to by descriptorAddress.

When ContextContralun and ContextContractiveare set for an IT context, this field shall point to the descriptor block
that is currently being processed by the DMA.

Refer to section 3.1.2 for a full description of the CommandPtr register and special functionality for IT contexts.

Open HCI Offset 11'h20C + (16 * n); where n = 0 for contexts 0, n = 1 for context 1, etc

31 30 29 28, 27 26 25 24‘23 22 21 20119 18 17 16‘15 14 13 12)11 10 9 8‘7 6 5 4,3 2 1 0
e rrr-rrrrr-r T T

descriptorAddress [31:4] Z

Figure 9-6 — CommandPtr register format

Page 118 Copyright © 1996-2000 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

9.2.2 IT ContextControl Register

The IT ContextControlset and clear registers contain bits that control options, operational state, and status for the
isochronous transmit DMA contexts. Software can set selected bits by writing ones to the corresponding bits in the
ContextControlSetregister. Software can clear selected bits by writing ones to the corresponding bits in the

ContextControlClearegister. It is not possible for software to set some bits and clear others in an atomic operation. A
read from either register will return the same value.

The context control register used for isochronous transmit DMA contexts is shown below. In addition to the standard
ContextControl fields as described in section 3.1.1, it includes a mechanism for starting transmit at a specified cycle time

Open HCI Offset 11’h200 + (16 * n) - Setwhere n = 0 for contexts 0, n = 1 for context 1, etc
Open HCI Offset 11'h204 + (16 * n) - Clear

31302928‘27252524‘23222120\19181716151413121110987654\3210
N N N N N N N N I B R B B

event

code

cycleMatchEnable reserved-

active undefined
dead

wake
Figure 9-7 — IT DMA ContextControl (set and clear) register format

Table 9-7 — IT DMA ContextControl (set and clear) register description

field rscu |reset | description

cycleMatchEnable rscu| undgef When setto one, processing will occur such that the packet described by thg context'’s
first descriptor block will be transmitted in the cycle whose number is specifidd in

the cycleMatch field of this register. The 15-bit cycleMatch field must match the low
order two bits of cycleSeconds and the 13-bit cycleCount field in the cycle start
packet that is sent or received immediately before isochronous transmission pegins.
Since the IT DMA controller may work ahead, the processing of the first descfiptor
block may begin slightly in advance of the actual cycle in which the first packgt is
transmitted.
The effects of this bit however are impacted by the values of other bits in this r¢gister
and are explained below this table. Once the context has become active, harflware
clears the cycleMatchEnable bit.

cycleMatch rsc undef Contains a 15-bit value, corresponding to the low order two bits of the bus
CycleTimecycleSecondand the 13-bit CycleTimeycleCounfield. If
ContextControkycleMatchEnablés set, then this IT DMA context will become
enabled for transmits when the low order two bits of the bus CycledyrieSecond
concatenated with CycleTinw.cleCountquals the cycleMatch value.

1*Z

run rscu | 1’'b0 | Refer to section 3.1.1.1 and the description following this table for an explandtion of
the ContextContratun bit.

wake rsu undef| Refer to section 3.1.1.2 for an explanation of the ContextCoakelit.

dead ru 1'n0 | Refer to section 3.1.1.4 for an explanation of the ContextCdaadbit.

active ru 1'b0 | Refer to section 3.1.1.3 for an explanation of the ContextCatre bit.

Copyright © 1996-2000 All rights reserved. Page 119

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 9-7 — IT DMA ContextControl (set and clear) register description

field rscu |reset | description

reserved undefined| ru undef This field is specified as undefined and may contain any value without impalting the
intended processing of this packet.

event code ru undef Following an OUTPUT_LAST* command, the error code is indicated in this|field.

Possible values are: ack_complete, evt_underrun, evt_descriptor_read,
evt_data_read, evt_tcode_err, evt_timeout, and evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these cddes.

The cycleMatch field is used to start an IT DMA context program on a specified cycle. Software enables matching by
setting the cycleMatchEnable bit. When the low order two bits of the bus CycleyoleSecondsoncatenated with
CycleTimecycleCount matches the cycleMatch value, hardware clears the cycleMatchEnable bit to 0, sets the
ContextControlctive bit to 1, and begins executing descriptor blocks for the context. The transition of an IT DMA
context to the active state from the not-active state is dependent upon the values of the run and cycleMatchEnable bits.

* If run transitions to 1 when cycleMatchEnable is 0, then the context will become active (active = 1).

* If both run and cycleMatchEnable are set to 1, then the context will become active when the low order two bits of
the bus CycleTimeycleSecondand 13-bit CycleTimeycleCountvalues match the 15-bit cycleMatch value.

 If both run and cycleMatchEnable are set to 1, and cycleMatchEnable is subsequently cleared, the context becomes
active.

* If both run and active are 1 (the context is active), and then cycleMatchEnable is set to 1, this will result in
unspecified behavior.

Due to software latencies, software attempts to manage the startup of a context too close to the current time may not be
effective.

In addition, the usability of cycleMatchEnable for IT contexts will be impacted by the cyclelnconsistent interrupt. Refer
to Section 9.5.1 for more information.

9.3 Isochronous transmit DMA controller

The following sections describe how software manages the multiple isochronous transmit DMA contexts. Each context
has a CommandPtr pointing to the current DMA descriptor. For every cycle start packet that the Host Controller receives
or sends, the IT DMA controller can transmit exactly one descriptor block describing exactly one packet from each DMA

context that is in the ContextControin state.

Page 120 Copyright © 1996-2000 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

9.3.1 IT DMA Processing

Each IT DMA context command pointer corresponds to a list of packets to be sent on successive 1394 cycles. Generall
each list represents a single isochronous channel. Isochronous channel numbers are not tied to any internal indexir
scheme utilized by the Host Controller to track all implemented IT DMA contexts. Each IT DMA context program
pointed to by each CommandPtr will specify the entire isochronous packet header, including the isochronous channe
number, for each packet that is transmitted. The entire IT DMA is summarized in the following figure:

CommandPtr O z OUTPUT_MORE-I [OUTPUT_MORE-| - OUTPUT_MORE-I

CommandPtr 1

CommandPtr 2

channel 9

OUTPUT_LAST OUTPUT_MORE OUTPUT_LAST

OUTPUT_LAST

OUTPUT_LAST -——//,_., OUTPUT_LAST Pt OUTPUT_LAST
-l

channel 6

OUTPUT_MORE-I - OUTPUT_MORE-I [OUTPUT_MORE-I

channel 42

>
normal branch OUTPUT_LAST

OUTPUT_LAST OUTPUT_LAST

skip
;'—/
cycle 2001 cycle 2002 cycle 2003
Figure 9-8 — IT DMA summary

In the example, three channels are being transmitted. Three cycles of transmit are shown. Context 0 is sending o
isochronous channel 9, using an OUTPUT_MORE-Immediate to send each packet header and an OUTPUT_LAST fol
each payload. In cycle 2002 the payload spans a page boundary, so channel 9 uses an extra OUTPUT_MORE. Channe
will skip to the next packet if any cycle is lost. Context 1 is sending on isochronous channel 6, with zero length packets
and only headers. Because channel 6 uses a single descriptor per packet, the skip branch is equal to the normal ne
packet branch. Context 2 is sending on isochronous channel 42, with each skip branch pointing to itself. If a cycle is lost
channels 6 and 9 will advance to the next packet, while channel 42 will fall behind by one packet, without skipping any
packets.

For every cycle, the IT DMA controller shall process each running context in order, from the lowest numbered context
through the highest numbered context. For each cycle, the IT DMA controller will complete one descriptor block for each
active IT DMA context. Once a packet has been transferred into the transmit FIFO, the packet is considered sent eve
though it may not have been transmitted yet on the 1394 wire.

Copyright © 1996-2000 All rights reserved. Page 121

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

In the case of an underrun while the IT DMA controller is processing a context, the IT DMA controller shall continue
through its list of active contexts taking the skip branch address for each of the remaining contexts.

9.3.2 Prefetching IT Packets

The Host Controller is permitted to work up to two cycles ahead of the current cycle time. The result is that it's possible
for data for a 1394 cycle to be put into the FIFO long before it is sent on the bus. This in effect creates a time decoupling
of the host side (input) of the FIFO from the link side (output) of the FIFO.

Since the host side and the link side are not time synchronized, the host side may have its own cycle timer. This keeps
track of the cycle number for which data is being put into the FIFO.nibtithe same cycle timer that the link side uses.

When the Host Controller is initialized, the timers are set to the same value and then the host side can start putting things
into the FIFO. Whenever the difference between the host side cycle time and the link side cycle time is less than two, the
host can start putting packets into the FIFO.

By working up to two cycles ahead it's possible for two 1394 cycles worth of packets to be in the FIFO at the same time.
To convey to the link side where the 1394 cycle boundary is between the packets, the host side puts a delimiter into the
FIFO each time processing is completed for all contexts for a cycle. When a cycle start appears on the 1394 bus, the link
starts taking packets out of the FIFO and sends the data on the bus until the link reaches the delimiter.

9.3.3 Isochronous Transmit Cycle Loss

The IT DMA controller can send multiple packets (multiple isochronous channels) in each isochronous cycle. Because
isochronous cycles can be lost, the IT DMA is organized so that one cycle’s worth of packets can be skipped, if necessary,
to catch up. The loss of an isochronous cycle is usually uncommon, and typically results from a bus reset.

If isochronous cycles were lost, and no corrective action was taken, the transmitter would gradually fall behind, sending
each packet some number of cycles after the transmission time intended by software.

In order to permit the transmitter to avoid falling behind, each packet in an IT DMA context program corgkips a
branch addressAny time the IT DMA wants to correct for a cycle loss, it will follow this branch instead of transmitting

the packet. For each cycle’s worth of packets (descriptor blocks), the IT DMA will either put all of the packets into the
FIFO and advance to the next descriptor block pointed to by branchAddress or will not put any packets into the FIFO and
will advance to the next descriptor block pointed to by skipAddress. SkipAddress is used for any condition in which the
IT DMA cannot acquire the bus to transmit all packets for a cycle within that cycle.

If an IT DMA context performs skip processing, the context shall generate an IsochTx interrupt if the ‘i’ field of the first
descriptor in the skipped descriptor block is set as 2’b11. This allows software to keep track of completed and skipped
descriptor blocks.

Software can use the skip branch in at least four ways. 1) Branching to the next packet will cause the IT DMA to skip
packets to recover from cycle loss. 2) Branching to the same packet will cause the IT DMA to fall behind (on that channel
only) without skipping any packets due to cycle loss. 3) Branching to an alternate context program can allow the genera-
tion of an interrupt, and the possible early completion of transmission. 4) Stopping the IT DMA context program due to
cycle loss. Software can use the third and fourth methods to cease transmission on cycle loss in the application-specific
case that the receiver cannot tolerate either late or lost packets.

Because the Host Controller will generally load isochronous transmit packets into a FIFO in advance of transmission,
some packets may be considered complete when cycle loss is detected, even though they have not yet left the transmit
FIFO. In this situation, the Host Controller will hold those packets in the FIFO until they can be transmitted, and will then
complete the transmission of each context packet that had been intended to go out in the same cycle. The Host Controller
will then apply the skip branching on the packets for the next cycle (the first cycle for which no transmission has been
performed). If a context in the IT DMA is arranged to skip packets on cycle loss, the packet skipped will be the one

Page 122 Copyright © 1996-2000 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

scheduled for the cycle following the cycle that was lost. If the Host Controller preloads more than one cycle’s worth of
packets, the skip may be delayed by a similar number of cycles, so that the transmit FIFO can empty normally, without
being flushed.

The illustration in Figure 9-9 shows how each of these cases works. In this example, the IT DMA attempts to keep two
cycles ahead of the bus. In other words, it tries to have two complete cycles in the transmit FIFO (if they will fit)
whenever possible. Context A illustrates case 1 (above), where the skip branch is chosen so that packets are skipped. N
that because of the FIFO preload, the two packets skipped on Context adA4;) follow a delayed packet @ that

was already in the FIFO. While it might have been possible to skip only one packet if the FIFO was flushed, it would be
much harder for the Host Controller to have packetrdady in time to send it on cycle 6. Context B illustrates case 2,
where packets are not skipped. While context A loses two packets, context B instead falls two cycles behind. Context C
illustrates case 3, where transmission ends in response to a detected cycle loss. Rauket& @vere already in the

FIFO, so they are transmitted, followed by the end-of-program packett@ descriptor block for packet,@oops to

itself in case additional cycles are lost befotgi€sent. This loop guarantees thgt vl be sent before the program

ends. Context D illustrates case 4, where transmission ends in response to a detected cycle loss without an end-of-progre
packet. The skip address indicates the end of list (Z=0) and no more packets are loaded into the FIFO upon detection
cycle loss.

9.3.4 Skip Processing Overflow

A skip processing overflow occurs when recurring cycle skip conditions occur and the Host Controller cannot record the
number of cycle skips necessary to catch up. Open HCI implementations shall provide for at least three outstanding ski
events before a skip processing overflow may occur. When a skip processing overflow occurs all IT DMA contexts with
ContextControkun set shall set ContextContrdéad and IntEventinrecoverableError(see section 9.5.3), and shall set
ContextControkventcodestatus to evt_timeout.

To recover from a skip processing overflow software shall clear ContextCamtrdbr all IT DMA contexts with
ContextControkun set, and verify these contexts are inactive before restarting any IT DMA contexts.

Copyright © 1996-2000 All rights reserved. Page 123

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

In these examples, the packets that are “in the FIFO” assume an infinitely large transmit FIFO. The Host Controller will
transmit packets as shown, even if they are too big to actually fit into the FIFO.

[] [] [] [] [] ‘/—\
context A{ A o A2 o A3 ol As o A5 » A6 >
context B{ B, o B, o Bs o Bs > Bs »l Bg -

ol O o < e ol
context C{ C, C, Cs Cy Cs Co > o

\ v
Rl
> Cx €0
T - - > >0 >0
context D{ D, T ° D, 17 Dj Dy 10 Ds De o — »
[5:]
Q
. &
:] 5
[A]Ba][CA[P] l BUS RESET [Pa]B][Ca][s] [Ae][Ba][S] [A7][Bs] | o
'3 I'4 I's '6 7 's 9 10

Figure 9-9 — Isochronous transmit cycle loss example

If a cycle loss is detected while the IT DMA is mid packet, that context’s descriptor block will not branch to the
skipAddress, but will advance to the next descriptor block.

9.3.5 FIFO Underrun

If there is a FIFO underrun while processing an isochronous context, then the following shall occur:

e The packet that underran is lost.
» The context with the underrun
1) doesnot write status to the descriptor block for to the underran packet, and
2) advances processing to the skipAddress contained in the descriptor block for the underrun packet.

Any contexts remaining to be processed for the now lost cycle will be processed by advancing to the next descriptor
block pointed to by skipAddress

* Any of the contexts that take the skipAddress as a result of the underrun will generate an IsochTx interrupt if the ‘i’
field in the first descriptor of the skipped descriptor block is set to 2’'b11

» The contexts shall be processed normally in the isochronous cycle that follows the underrun.

Page 124 Copyright © 1996-2000 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

All actions to recover from the FIFO underrun shall be executed immediately after the underrun, and skip processing will
disrupt a minimum number of contexts.

9.3.6 Determining the number of implemented IT DMA contexts

The number of supported isochronous transmit DMA contexts may vary for 1394 Open HCI implementations from a
minimum of four to a maximum of 32. Software can determine the number of supported IT DMA contexts by writing
32’hFFFF_FFFF to isoXmitintMask register (see section 6.3.1), and then reading it back. Bits returned as 1's indicate
supported contexts, and bits returned as 0’s indicate unsupported/unimplemented contexts.

9.4 Appending to an IT DMA Context Program

As described in Section 3.2.1.2, “Appending to Running List,” software may freely append to a context program without
knowledge of where the controller is in processing the list of descriptor blocks. Unlike other DMA contexts, the IT DMA
contexts can have two pointers that may require updating in the known last descriptor block; the skipAddress and the
branchAddress. When an IT context has reached the end of its context program and active is 0, setting wake will result i
using the descriptomqt descriptor block) which had Z=0 and will use the provided address, be it a skip or branch, for
retrieving the next descriptor block.

9.5 IT Interrupts

Each of the possible 32 isochronous transmit contexts can generate an interrupt, so each IT context has a bit in th
isoXmitIntEvent register. Software can enable interrupts on a per-context basis by setting the corresponding isoXmitMask
bit to one.

To efficiently handle interrupts which could conceivably be generated from 32 different contexts in close proximity to one
another, there is a single bit for all IT DMA contexts in the Host Controller IntEvent register. This bit signifies that at
least one but potentially several IT DMA contexts attempted to generate an interrupt. Software can read the isoXmitint-
Event register to find out which context(s) are involved. For more information on the isoXmitintEvent register, see
section 6.3.1.

9.5.1 cyclelnconsistent Interrupt

When the IntEventyclelnconsistenttondition occurs (table 6-1), the IT DMA controller shall continue processing
running contexts normally, with the exception that contexts with the ContextContteMatchEnablédit set will remain

inactive and cycleMatch processing shall be, in effect, disabled. To re-enable cycleMatch processing, software must firs
stop the IT contexts for which cycleMatch is enabled (by clearing ContextComtrolo O and waiting for
ContextControkctive to go to 0), then must clear the IntEvemtlelnconsisteninterrupt. The stopped IT contexts may

then be started, but software should not schedule any transmits to occur for these contexts for at least two cycle
immediately following the clearing of the interrupt condition.

9.5.2 busReset Interrupt

Bus reset does not affect isochronous transmit.

Copyright © 1996-2000 All rights reserved. Page 125

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

9.5.3 UnrecoverableError Interrupt

The IT DMA context shall set ContextContidgad,set ContextContradventcoddo evt_timeoutand generate and unre-
coverableError interrupt event when a skip processing overflow occurs as described in section 9.3.4.

9.6 IT Data Format

An isochronous transmit packet consists of two header quadlets (as specified in either the OUTPUT_MORE-Immediate or
OUTPUT_LAST-Immediate descriptor) and an optional data payload. The data payload in host memory is not required to
be aligned on a quadlet boundary. Padding is added by the Host Controller if needed. The format is as follows.

31 30 29 2827 26 25 24|23 22 21 20§19 18 17 16§15 14 13 12311 10 9 8} 7 6 5 433 2 1 O
reserved spd tag chanNum tcode=4’hA sy
datalLength reserved
: : isochronous data : :
I
|
I padding (if needed)
|
Figure 9-10 — Isochronous transmit format
Table 9-8 — Isochronous transmit fields
field name bits | description
spd 3 | This field indicates the speed at which this packet is to be transmitted. 3'b000 F 100
Mbits/sec, 3'b001 = 200 Mbits/sec, and 3'b010 = 400 Mbits/sec, other values afe
reserved.
tag 2 | The data format of the isochronous data (see IEEE 1394 specification)
chanNum 6 | The channel number this data is associated with.
tcode 4 | The transaction code for this packet.
sy 4 | Transaction layer specific synchronization bits.
datalLength 16| Indicates the number of bytes in this packet.
isochronous data The data to be sent with this packet. The first byte of data must appear in the|leftmost
byte of the first quadlet of this field. The last quadlet should be padded with zerpes, if
necessary.
padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the epd of the
packet to guarantee that a whole number of quadlets is sent.

Page 126 Copyright © 1996-2000 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Note that packets to go out over the 1394 wire are constructed from this Host Controller internal format, and are not sen
in the exact order as shown above. For example, spd, shown in the first quadlet, is not transmitted at all as part of th
isochronous packet header.

Copyright © 1996-2000 All rights reserved. Page 127

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Page 128 Copyright © 1996-2000 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

10. Isochronous Receive DMA

The Isochronous Receive DMA (IR DMA) controller has a required minimum of four and an implementation maximum
of 32 isochronous receive DMA contexts. Each context is controlled by a DMA context program. One single IR DMA
context can receive packets from multiple isochronous channels, and the remaining DMA contexts can each receive
packets from a single isochronous channel. IR DMA contexts can receive exactly one packet per buffer (packet-per-
buffer), concatenate packets into a stream that completely fills each of a series of buffers (buffer-fill), or concatenate &
first portion of payload of each packet into one series of buffers and a second portion of payload into another separat
series of buffers (dual-buffer mode). Packets may be received with or without isochronous packet headers and time
stamps.

10.1 IR DMA Context Programs

For isochronous receive DMA, a context program is a list of DMA descriptors used to identify buffers in host memory
into which the Host Controller places received isochronous packets.

10.1.1 Buffer-Fill and Packet-per-Buffer Descriptors

There are two kinds of descriptor commands available in the packet-per-buffer and buffer-fill modes: INPUT_MORE and
INPUT_LAST. These descriptors are 16 bytes in length and shall be aligned on a 16 byte boundary.

cmd=2 key= ;
Ior; 3I S 3 bI0 1 ! tI) Vlv 1 1 1 1 1 Ire(I:IC:IOLilntI 1 1 1 1 1
dataAddress
1 1
branchAddress Z
1 1
xferStatus resCount

Figure 10-1 — INPUT_MORE/INPUT_LAST descriptor format

Table 10-1 — INPUT_MORE/INPUT_LAST descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h2 for INPUT_MORE, or set to 4’h3 for INPUT_LAST.
INPUT_MORE is required for receiving packets in buffer-fill mode (see section 10|2.1),
and may also be used in packet-per-buffer mode.

INPUT_LAST is required for receiving packets in packet-per-buffer mode (see
section 10.2.2), and shall be the final descriptor in a descriptor block. It is not perinitted
in buffer-fill mode.

S 1 Used with packet-per-bufferode only (see section 10.2.2). If set to one, xferStatug and
resCount will be updated upon descriptor completion. If set to zero, neither field i
updated. Assumed to be one for buffer-fill mode.

key 3 This field shall be set to 3'b0.

i 2 Interrupt control. Valid values are 2'b11 to generate an IsochRx interrupt when thé
descriptor is completed (see section 6.1), or 2'b00 for no interrupt. The descriptor]
completed in buffer-fill when resCount is written zero by the Host Controller, and is
completed for packet-per-buffarhen the residual count is updated. Behavior is
unspecified for 2’b01 and 2’b10. In packet-per-buffexde (see section 10.2.2), software
shall seti to 0 in INPUT_MORE descriptors and hardware may ignore this field. T

S

Copyright © 1996-2000 All rights reserved. Page 129

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 10-1 — INPUT_MORE/INPUT_LAST descriptor element summary

Element Bits | Description

b 2 Branch control. Valid values are 2’b11 to branch to branchAddress, and 2'b00 nof to
branch. Behavior is unspecified for 2’b01 and 2'b10.

For buffer-fill mode (see section 10.2.1), this field shall always be set to 2’'b11.
For packet-per-buffemode (see section 10.2.2), this field shall be 2'b00 for
INPUT_MORE commands and 2’b11 for INPUT_LAST commands.

w 2 Wait control. Valid values are 2'b11 to wait for a packet with a sync field which
matches the sync specified in the context’s IRContextMatch register (see sectioh 10.3),
or 2'b00 not to wait.
For packet-per-buffemode, 2’b11 can only be used in the first descriptor of a descfiptor
block.
For buffer-fill mode a w of 2'b11 affects all packets received into the buffer - thg wait
condition will apply the sync match requirementeiach packet to be received into the
indicated buffer and not just to the first packet. If needed, the w field should bef set to
2'b11 for only the first descriptor in a buffer-fill context program.
Note that all packets are filtered on the IRContextMatch tag values regardless of the
value of this (w) field. Behavior is unspecified for 2’b01 and 2'b10.

reqCount 16 Request count: The size of the input buffer in bytes.

dataAddress 32 Address of receive buffer. Any receive buffer which will contain one or more packet
headers shall have a quadlet aligned dataAddress. Buffers to receive data only (n
headers) may have a byte aligned dataAddress.

[=]

branchAddress 28 16-byte aligned address of the next descriptor. This field is not used for INPUT_[MORE
commands in packet-per-buffer mode.
4 4 For buffer-fill mode (see section 10.2.1), Z shall be either 1 to indicate the branchA@dress

is a valid address for the next INPUT_MORE, or 0 to indicate this descriptor is the pnd of
the context program.
For packet-per-buffemode (see section 10.2.2), if the command is INPUT_LAST, Z may

be a value from 1 to 8 to indicate the number of descriptors in the next descriptor|block,
or O to indicate the end of the context program. If the command is INPUT_MORE| then
Z is not used.

xferStatus 16 Composed of 16-bits from ContextControI[lS 0].
For buffer-fill mode, xferStatus is written when resCount is updated.
For packet-per-buffemode, xferStatus is written after the descriptor is processed if|s = 1.

resCount 16 Residual count: The number of bytes remaining in the dataAddress buffer (out of a
maximum of reqCount). Written if in packet-per-buffer mode and s = 1, or each time a
packet is received in buffer-fill mode. For further details on when resCount is upddted in
buffer-fill mode, see section 10.2.1.

10.1.2 Dual-Buffer Descriptor

There is only one type of descriptor used in dual-buffer mode, and this is referred to as the DUALBUFFER descriptor.
This descriptor is 32-bytes in length, and shall be aligned on a 16 byte boundary.

Page 130 Copyright © 1996-2000 All rights reserved.

Isochronous Receive DMA

1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

Since DUALBUFFER is the only descriptor type used in dual-buffer mode, the typical descniutéield is reserved for
future use. Refer to section 10.2.3 for details on dual-buffer mode processing.

key= : . :

1 1 S 3 bI0 1 ! tI) Vlv 1 1 1 1 1 IfIr;StISIZIe 1 1 1 1 1 1
firstReqCount secondReqCount

1 1

branchAddress Z

1 1
firstResCount secondResCount

1 1

1 1

firstBuffer
1 1
secondBuffer
1 1

Figure 10-2 — DUALBUFFER descriptor format

Table 10-2 — DUALBUFFER descriptor element summary

Element

Bits

Description

S

Status control. This bit shall be set to one.

key

This field shall be set to 3'b0.

Interrupt control. Valid values are 2'b11 to generate an IsochRx interrupt when thé
descriptor is completed (see section 6.1), or 2'b00 for no interrupt. The DUALBUH
descriptor is complete when either the firstBuffer or the secondBuffer is filled and
firstResCount or secondResCount is written zero by the Host Controller. Behaviol
unspecified when this field is set to either for 2’'b01 or 2’b10.

FER

is

Branch control. This field shall be set to 2'b11.

Wait control. Valid values are 2’b1l1l to wait for a packet with a sync field W
matches the sync specified in the context’s IRContextMatch register (see sectio
or 2’b00 not to wait. When set to 2'b11, the wait condition will apply the sync N
requirement teeachpacket to be received into the indicated buffers and not just {
first packet. If needed, the w field should be set to 2'b11 for only the first descri
a dual-buffer mode context program.

Note that all packets are filtered on the IRContextMatch tag values regardless|
value of this (w) field. Behavior is unspecified for 2’'b01 and 2’b10.

hich

h 10.3),
hatch

o the
tor in

of the

firstSize

16

First size. This field specifies the fixed length in bytes of the first data information i

h each

packet payload to stream into the buffer pointed to by firstBuffer and shall be a multiple

of four bytes.

firstReqCount

16

First data request count. Specifies the size of the buffer in bytes pointed to by fir
and shall be a multiple of firstSize.

stBuffer

secondReqgCount

16

Second data request count. Specifies the size of the buffer in bytes pointed to
Buffer.

y second-

branchAddress

28

16-byte aligned address of the next descriptor when Z is non-zero.

z

This field shall be either set to 4’h2 to indicate the branchAddress is a valid addreg

ss for

the next descriptor, or 4'h0 to indicate this descriptor is the end of the context pro

jram.

Copyright © 1996-2000 All rights reserved.

Page 131

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 10-2 — DUALBUFFER descriptor element summary

Element Bits | Description

firstResCount 16 First buffer residual count. Software shall initialize this field to the same value as that pro-
grammed in firstReqCount. Hardware shall update this field with the current first data
buffer residual count in bytes after each packet is successfully received. The Host Control-
ler shall update firstResCount and back packets out of the firstBuffer according to the pro-
cedure described in section 10.2.1 for the buffer-fill receive mode.

secondResCount 16 Second buffer residual count. Software shall initialize this field to the same value as that
programmed in secondReqCount. Hardware shall update this field with the current second
data buffer residual count in bytes after each packet is successfully received. The|Host
Controller shall update secondResCount and back packets out of the secondBuffef accord-
ing to the procedure described in section 10.2.1 for the buffer-fill receive mode.

firstBuffer 32 First buffer pointer. This field specifies the physical address of the start of the first|buffer
and shall be quadlet aligned.

secondBuffer 32 Second buffer pointer. This field specifies the physical address of the start of thg second
buffer.

10.1.3 Descriptor Z Values

The Z value is used by the Host Controller to fetch multiple command descriptors at once, for improved efficiency. The
contiguous descriptors described by a Z value are calbskeriptor block The following table summarizes all legal Z
values:

Table 10-3 — Z value encoding

Z value Use
0 Indicates that the current descriptor is the last descriptor in the context program
1-8 Indicates that one to eight 16-byte aligned blocks starting at descriptorAddress afe phys-

ically contiguous.

9-15 reserved

All IR DMA context programs shall indicate the end of the program by using a command descriptorbwittiua of
2'b11 (branch always) andzvalue of 0. A context program can be appended to while the DMA runs, even if the DMA
has already reached the last descriptor. Section 3.2.1.2 describes how to append to a context program.

When an IR DMA context is running and/or active, software shall not modify any command descriptors within the context
program with the exception of the last command descriptor (the one descriptor in a program2iiill andZ=4'h0).
The last command descriptor may only be modified according to the steps described in section 3.2.1.2.

Page 132 Copyright © 1996-2000 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

10.2 Receive Modes

The Host Controller can write isochronous receive packets into host memory buffers in one of three ways. It can place
them using either buffer-fill mode, packet-per-buffer mode, or dual-buffer mode.

10.2.1 Buffer Fill Mode
In bufferFill mode, all received packets are concatenated into a contiguous stream of data. This data is then metered ol

into buffers described by a DMA context program, filling each buffer completely. Packets may straddle multiple buffers in
this mode (see packet 2 in the illustration below).

MORE |S|key=OI I i |b:% WI reqCount
dataAddress
PR T T ST S S S RS R R S S S U S S S WA R ST ST BT A BT SITL.. s ., o
o branchAddress Z=1 paCket i paCk
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Il 1 1 1 1 1 1 1 1 1 1 1 1 1 1
xferStatus I resCount=0
FMORE |s|key=0| I i |b=3| w I reqCount
dataAddress
. branchAddress z=1 et 2 packet 3
xferStatus resCount

Figure 10-3 — IR Buffer Fill Mode

A context program for an isochronous receive context in buffer-fill mode consists of a list of independent INPUT_MORE
descriptors, each branching to the next descriptor in the list. Since each descriptor shall always branch to the subseque
one, theb field shall always be set to 2'b11 to indicate a branch. If a buffer-fill mode INPUT_MORE descriptor is not the
last descriptor in the list, its Z value shall be set to 1 to instruct the Host Controller to fetch the next single défscriptor.

it is the last one in the list, Z shall be set to 0. Also, to ensure an acees&teuntvalue software shall initialize
resCount to the value of reqCount.

As depicted above, it is possible for a received packet to straddle multiple buffers. To ensure that the receive buffers for
context remain parsable, hardware shall follow the following procedure.

1) After filling to the end of a buffer with a partial packet, advance to the next descriptor block and obtain the
next buffer (dataAddress), retaining all state for the first buffer as well as for the new buffer.

2) Continue writing packet bytes into the subsequent buffer(s). If the end of a buffer is reached, advance to the
next buffer without updating xferStatus and retaining only cummulative interrupt state (section 6.4.1). Write
the remaining packet bytes into the fimacketbuffer.

3) If there is no data error: a) conditionally write the trailer quadlet into the last buffer, b) update xferStatus and
resCount into thdinal buffer's descriptor, and c) update xferStatus and resCount intdirghebuffer's
descriptor. At that point the previous state of the first buffer is no longer needed and the first buffer's
descriptor is completed.

4) If thereis an error, then the packet shall be ‘backed-out’ by reverting back to the previous state (as saved
earlier). XferStatus and resCount are not updéteeither descriptor.

By following these steps, the IR context buffers remain intact and can be parsed. Since interim buffers (those containing
an inner portion of one packet) will not have their status updated, software shall only use resCount values when the
corresponding xferStatus indicates the active bit is set to one. It follows from this that if the xfeaStiatusit is set in

a descriptor, then all prior descriptors have been filled.

Copyright © 1996-2000 All rights reserved. Page 133

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

For information on the effect of a host bus error on an IR DMA context in buffer-fill mode, refer to section 13.2.6.
10.2.2 Packet-per-Buffer Mode

In packet-per-buffer mode, each received packet is placed in the buffer(s) described by one descriptor block. Any leftover
bytes are discarded, and packets never straddle multiple descriptor blocks. Both INPUT_MORE and INPUT_LAST are
allowed in packet-per-buffer mode. Each INPUT_LAST marks the end of a packet, though the final byte may have been
used up in a previous INPUT_MORE (see packet 2 in the illustration below). Each packet starts in an INPUT_* command
that follows an INPUT_LAST.

MORE |s|key=0| |i=0|b=0| w I reqCount
1 1
., SaeAddess
X X pack
xferStatus [not written] resCount [not written]
LAST |s|key=0 l i |b=3| reqCount
1 1
dataAddress
Ly
. branchAddress z=2 et 1
xferStatus I resCount
"MORE |s|key:0 li:0|b:0| WI reqCount
1 1
dataAddress
Ly
X X packet 2
xferStatus resCount
LAST |s key:OI l i |b:3| reqCount
1 1
dataAddress
L vy 1
, branchAddress zZ=2
xferStatus [not written] I resCount [not written]
’MORE|s|key:OI li:0|b:0| WI reqCount
1 1
dataAddress 3
L vy P
X X
xferStatus [not written] resCount [not written]
LAST |s|key:0 l i |b:3| reqCount
1 1
dataAddress
L a1 P
R branchAddress zZ=2 acket 3
xferStatus I resCount

Figure 10-4 — packet-per-buffer receive mode

A context program for an isochronous receive context in packet-per-buffer mode consists of a series of descriptor blocks.
Each descriptor block describes buffers that will receive one packet and shall contain a contiguous set of 0 to 7
INPUT_MORE descriptors, followed by one INPUT_LAST descriptor. This requirement permits the Host Controller to
prefetch all the descriptors for a packet, in order to avoid fetching additional descriptors during a packet transfer.
INPUT_MORE descriptors shall have thdield set to 2'b00 (never branch). INPUT_LAST descriptors shall havé the

field set to 2'b11 (always branch), and shall either have a valid address in branchAddress with a Z value of 1 to 8, or shall
have a Z value of 0 to indicate it's the last descriptor in the context program.

Page 134 Copyright © 1996-2000 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

For information on the effect of a host bus error on an IR DMA context in packet-per-buffer mode, refer to section 13.2.6.
10.2.2.1 Command.xferStatus and Command.resCount updates

In packet-per-buffer mode, when s=1 the xferStatus and resCount fields are updated only in the descriptor for the buffe
which receives the last byte of the packet. ResCount is only valid in a descriptor if the xferStatus field has the
ContextControkctive bit set. To obtain accurate values for xferStatus, software should initialize xferStatus to zero
(evt_no_status).

In figure 10-4 above, there are 3 shaded xferStatus quadlets. The shaded quadlets are status fields that were never upda
and the unshaded status quadlets reflect status fields that were updated. In the top descriptor block, the xferStatus quad
in the first descriptor was not written because packet 1 did not complete in the first descriptor's buffer. In the middle
descriptor block, the first descriptor was big enough to hold packet 2 completely. Since the first descriptor’s buffer
received the last byte of packet 2, the first descriptor’'s status was written, and the second descriptor’s status is ignorec
Although the OUTPUT_LAST's status is ignored in this exampld, lii¢ is used to determine whether or not an interrupt

is triggered for this descriptor block.

If a descriptor block describes buffer space that cannot fit an entire packet (including header if isochHeader mode is
enabled), then the overflow bytes are discarded. When this occurs, xferStatus.ack will be set to evt_long_packet.

10.2.3 Dual-Buffer Mode

Dual-buffer mode is selected by setting the ContextCodualBufferModebit to one before starting an isochronous
receive context. When ContextContthlalBufferModeis set to one, the ContextContmultiChanModeand Context-
ControlbufferFill bits shall be programmed to zero.

When an isochronous receive context is in dual-buffer mode, all received packets are viewed as containing a first portiot
of the payload followed by a second portion. This view of isochronous packet data aligns with several protocols utilizing
isochronous services.

The dual-buffer mode operations are similar to buffer-fill mode, but provide two separate series of buffers to stream isoch:-
ronous packet data: firstBuffer series and secondBuffer series. The Host Controller separates the first portion from the
second portion of packet payload per the firstSize field of the DUALBUFFER descriptor. The first portions of received
packets are concatenated into a contiguous stream of data and metered out into the firstBuffer series. The second porti
of received packets are concatenated into a contiguous stream of data and metered out into the secondBuffer series. T
firstBuffer and secondBuffer series are described by the DUALBUFFER descriptors.

The data formats for dual-buffer mode are described in section 10.6.2. The isochronous header and trailer shall be part
the firstBuffer series and shall not be presented to the secondBuffer series if Contexi€actitdbadeis set. To ensure

that the header and trailer information is not presented to the secondBuffer series, software shall set the firstSize field t
at least eight bytes when ContextConissichHeaderis set.

DUALBUFFER descriptors shall be retired when either the firstBuffer or secondBuffer indicated by the descriptor has
been filled by the Host Controller and a residual count of zero has been written to either firstResCount or secon-
dResCount. FirstBuffer data shall not span a buffer pointed to by a DUALBUFFER descriptor. Software shall set up first
data buffers in multiples of firstSize (including header and trailer quadlets if ContextCeotioHeaderis set).
Hardware shall subtract firstSize from firstResCount for each packet received. This ensures that each packet’s first portiol
begins at a predetermined address in the firstBuffer.

The diagram that follows illustrates a sequence of packets of varying length. The first DUALBUFFER descriptor is retired
after packet 2 second data payload has spanned the second data buffer, and the second descriptor is retired after pack
first data completely fills the first data buffer. The Host Controller may receive packets with empty second portions (i.e.
only first data payload), and this is illustrated in the following diagram with packets 3 and 4.

Copyright © 1996-2000 All rights reserved. Page 135

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

o dslkey [lifolw], firstSize . .

.., [frstReqcount, | secondReqCount, p| Pt 1 first| pkt 2 first

e, ..., branchAddress z=2

_ . firstResCount | secondResCount

............. firstBuffer L.

............ secondBuffer ., ., ¢ » pkt 1 second | pkt 2 second
o dslkey D T lw] firstSize | . . .
. frsReaCount [secondReqCount,_ p| Pkt 3 first| pkt 4 first | pkt 5 first
[....., . branchAddress 72

_ . firstResCount | secondResCount

............. firstBuffer, ..,

............ secondBuffer »| pkt 2 sec (cont)|pkt 5 second

Figure 10-5 — IR Dual-Buffer Mode

The Host Controller shall support second data payload for a received packet to straddle multiple buffers. In dual-buffer
mode, the Host Controller shall follow the procedure for residual count update and ‘backing-out’ described for buffer-fill
mode in section 10.2.1.

When the IR DMA context receives a packet while in dual-buffer mode, the Host Controller shall perform the following
actions:

« store up to firstSize bytes from the beginning of the packet (including header & trailer quadlets if enabled) into the
firstBuffer starting at address (firstBuffer + firstReqCount - firstResCount);

» store up to secondResCount bytes of packet data, if any, into the second buffer starting at address (secondBuffer +
secondRegCount - secondResCount). Pad bytes are not stored in the second buffer. Note: if there are additional bytes
in the packet, processing proceeds to the next DMA descriptor block to store data in its second buffer;

+ if the packet was received without error then store the new values for firstResCount and secondResCount with a
single write. The new values are: firstResCount = firstResCount - firstSize; secondResCount = secondResCount -
bytes_stored_in_second_buffer. Note: if the packet data length causes an advance to a new descriptor block, then
that block's secondResCount is updated without changing its firstResCount, next the original descriptor block’s
firstResCount and secondResCount are updated.

« completes this descriptor block when firstResCount or secondResCount is written as zero

If a packet is received that is not large enough to fill firstSize bytes of the firstBuffer (including header & trailersquadlet

if enabled), the Host Controller shall treat the packet as if it exactly filled firstSize bytes of the firstBuffer, and shall
update firstResCount accordingly. The buffer locations not filled by the short packet have undefined contents, and are not
used to store a subsequent packet.

For information on the effect of a host bus error on an IR DMA context in dual-buffer mode, refer to section 13.2.6.

Page 136 Copyright © 1996-2000 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

10.3 IR Context Registers

Each isochronous receive context consists of three registers: CommandPtr, IRContextControl, and IRContextMatch
CommandPtr is used by software to tell the IR DMA controller where the DMA context program begins. IRContextCon-
trol is used by software to control the context's behavior, and is used by hardware to indicate current status. IRContext
Match is used to start on a specified cycle number and to filter received packets based on their tag bits and possibly syr
bits. This section describes each register in detail.

10.3.1 CommandPtr

The CommandPtr register specifies the address of the context program which shall be executed when a DMA context i
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address shall be zero. Th
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically
contiguous descriptors are pointed to by descriptorAddress. In buffer-fill mode, Z will be either one or zero. In packet-per-
buffer mode, Z will be from zero to eight.

Refer to section 3.1.2 for a full description of the CommandPtr register.
Open HCI Offset 11’h40C + (32 * n); where n = 0 for context 0, n = 1 for context 1, etc

31 30 29 28, 27 26 25 24‘23 22 21 20119 18 17 16‘15 14 13 12)11 10 9 8‘7 6 5 4,3 2 1 0

descriptorAddress [31:4] Z

Figure 10-6 — CommandPtr register format

10.3.2 IR ContextControl register (set and clear)

The IR ContextControlregister contains bits that control options, operational state, and status for the isochronous receive
DMA contexts. Software can set selected bits by writing ones to the corresponding bit€onteetControlSetegister.
Software can clear selected bits by writing ones to the corresponding bits @onibextControlClearegister. It is not
possible for software to set some bits and clear others in an atomic operation. A read from either register will return the
same value.

Copyright © 1996-2000 All rights reserved. Page 137

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

The context control register used for isochronous receive DMA contexts is shown below. It includes several fields which
permit software to filter packets based on various combinations of fields within the isochronous packet header.

Open HCI Offset 11’h400 + (32 * n) - Setwhere n = 0 for context 0, n = 1 for context 1, etc
Open HCI Offset 11'h404 + (32 * n) - Clear

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0
L L

spd event
code
|| [
B '
dualBufferMode run .
multiChanMode g active
cycleMatchEnable ead
isochHeader wake

bufferFill
Figure 10-7 — IR DMA ContextControl (set and clear) register format

Table 10-4 — IR DMA ContextControl (set and clear) register description

field rscu |reset | description

bufferFill rsc undef| When set to one, received packets are placed back-to-back to completely filf each
receive buffer (specified by an INPUT_MORE command). When clear, each re¢eived
packet is placed in a single buffer (described by zero to seven INPUT_MORH com-
mands followed by an INPUT_LAST command). If the multiChanMode bit is st to
one, this bit shall also be set to one.

The value of bufferFill shall not be changed whiktiveor run is set to one.

isochHeader rsc undef When set to one, received isochronous packets will include the complete 4fbyte iso-
chronous packet header seen by the link layer. The end of the packet will be narked
with a xferStatus (bits 15:0 of this register) in the first doublet, and a 16-bit timeS-
tamp indicating the time of the most recently received (or sent) cycleStart pagket.
When clear, the packet header is stripped off of received isochronous packetg. The
packet header, if received, immediately precedes the packet payload. Detailq are
shown in section 10.6.

The value of isochHeader shall not be changed veluilizeor run is set to one.

cycleMatchEnable rscu| undef In general, when set to one, the context will begin running only when the 15-bit
cycleMatch field in the contextMatch register matches the two bits of the bus
CycleTimecycleSecondand 13-bit CycleTimeycleCountvalues. The effects of
this bit however are impacted by the values of other bits in this register and are
explained below. Once the context has become active, hardware clears the
cycleMatchEnable bit.

The value of cycleMatchEnable shall not be changed wlotigeorrun is set to ond.

multiChanMode rsc undef When set to one, the corresponding isochronous receive DMA context will feceive
packets for all isochronous channels enabled in the IRChannelMaskHi and IRChan-
nelMaskLo registers (see section 10.4.1.1). The isochronous channel numbef speci-
fied in the IRDMA context match register is ignored. When set to zero, the IRDMA

context will receive packets for that single channel.

Only one IRDMA context may use the IRChannelMask registers. If more than one
IRDMA context control register has the multiChanMode bit set, results are urjde-
fined. Since the value of this bit is undefined after reset in all IR contexts, soffware
shall initialize this bit to zero in all contexts whether or not active to maintain the
exclusive nature of this bit. See section 10.4.3 for more information.

The value of multiChanMode shall not be changed wditéveor run is set to one

Page 138 Copyright © 1996-2000 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 10-4 — IR DMA ContextControl (set and clear) register description

field rscu |[reset | description

dualBufferMode rsc undef When set to one, received packets shall be separated into first and second|payload
and streamed independently to the firstBuffer series and secondBuffer serieg as
described in section 10.2.3. Both multiChanMode and bufferFill shall be pro-
grammed to zero when this bit is set.

The value of dualBufferMode shall not be changed wéiléveor run is set to ond.

run rscu | 1'b0 | Referto section 3.1.1.1 and the description following this table for an explangtion of
the ContextControdun bit.

wake rsu undef| Refer to section 3.1.1.2 for an explanation of the ContextCoak®hit.

dead ru 1'b0 | Refer to section 3.1.1.4 for an explanation of the ContextCde#dbit.

active ru 1'b0 | Referto section 3.1.1.3 for an explanation of the ContextCawtiotbit.

spd ru undef| This field indicates the speed at which the packet was received. 3'b000 = 100
Mbits/sec, 3'b001 = 200 Mbits/sec and 3'b010 = 400 Mbits/sec. All other valugs are
reserved.

event code ru undef For bufferFitlode, possible values are: ack_complete, evt_descriptor_read,

evt_data_write and evt_unknown. Packets with data errors (either dataLengt mis-
matches or dataCRC errors) and packets for which a FIFO overrun occurred jare
‘backed-out’ as described in section 10.2.1.
For packet-per-buffemode, possible values are: ack_complete, ack_data_errg
evt_long_packet, evt_overrun, evt_descriptor_read, evt_data_write and
evt_unknown.

See Table 3-2, “Packet event codes,” for descriptions and values for these cddes.

=

The cycleMatchEnable bit is used to start an IR DMA context program on a specified cycle. When the cycleStart packet’s
low order two bits of cycleSeconds and 13-bit cycleCount values match the 15-bit cycleMatch value (in the IR
contextMatch register), hardware sets the cycleMatchEnable bit to 0, sets the Context#etingbit to 1, and begins
executing descriptor blocks for the context. The transition of an IR DMA context to the active state, from the not-active
state is dependent upon the values of the run and cycleMatchEnable bits.

« If run transitions to 1 when cycleMatchEnable is 0, then the context will become active (active = 1).

« If both run and cycleMatchEnable are set to 1, then the context will become active when the cycleStart packet’s low
order two bits of cycleSeconds and 13-bit cycleCount values match the 15-bit cycleMatch value indicated in the IR
contextMatch register.

« If both run and cycleMatchEnable are set to 1, and cycleMatchEnable is subsequently cleared, the context become
active.

e If both run and active are 1 (the context is active), and then cycleMatchEnable is set to 1, this will result in
unspecified behavior.

Copyright © 1996-2000 All rights reserved. Page 139

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

10.3.3 Isochronous receive contextMatch register

The IR ContextMatch register is used to start a context running on a specified cycle number, to filter incoming isochro-
nous packets based on tag values and to wait for packets with a specified sync value. All packets are checked for a
matching tag value, and a compare on sync is only performed when the descripfiegld is set to 2’'b1ll. See

section 10.1 for proper usage of tefield. This register should only be written when ContextCorgctive is 0, other-

wise unspecified behavior will result.

Open HCI Offset 11'h410 + (32 * n); where n = 0 for context 0, n = 1 for context 1, etc

31 30 29 28 27262524‘23222120\19181716‘1514131211109 8/7 6 5 4,3 2 1 0

B B I B B B I B B B Y B I
cycleMatch sync channelNumber
I I O O O Y I
tag3
tag2 taglSyncFilter
tag
tag
Figure 10-8 — IR DMA ContextMatch register format
Table 10-5 — IR DMA ContextMatch register description
field rwu |reset |description
tag3 rw | undef | If set, this context will match on isochronous receive packets with a tag field off 2'b11.
tag2 rw | undef | If set, this context will match on isochronous receive packets with a tag field of| 2'b10.
tagl rw | undef | If set, this context will match on isochronous receive packets with a tag field off 2'b01.
tag0 rw | undef | If set, this context will match on isochronous receive packets with a tag field off 2'b00.
cycleMatch rw | undef| Contains a 15-bit value, corresponding to the low order two bits of cycleSecorlds and
the 13-bit cycleCount field in the cycleStart packet. If
ContextControkycleMatchEnablés set, then this IR DMA context will become
enabled for receives when the two low order bits of the bus cycledyjoieSecondand
cycleTimecycleCountvalues equal the cycleMatch value.
sync rw | undef | This field contains the 4 bit field which is compared to the sync field of each
isochronous packet for this channel when the command descripthekl is set to
2'b11.
taglSyncFilter rw | undef | If setto one and the contextMatelylbit is set, then packets with tag 2'b01 shall oply
*% be accepted into the context if the two most-significant bits of the packet's sync|field
are 2'b00. Packets with tag values other than 2'b01 shall be filtered according tp the
tag0, tag2 and tag3 bits above with no additional restrictions.
If clear, this context will match on isochronous receive packets as specified in the
tag0-3 bits above with no additional restrictions.
** |f LinkControl. tag1SyncFilterLocks set, then this bit is read only and is set to pne
by the OHCI.
channelNumber rw | undef This six bit field indicates the isochronous channel number for which this IR DNIA con-
text will accept packets.

At least one tag bit shall be set to 1, otherwise no received packets will match and the context will, in effect, wait forever.

Page 140 Copyright © 1996-2000 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

10.4 Isochronous receive DMA controller

The following sections describe how software manages the multiple isochronous receive DMA contexts. Each context ha
a CommandPtr pointing to the initial DMA descriptor, a ContextControl register, and a contextMatch register to start the
context based on a cycle number and to filter packets. The IR DMA controller has one set of IRMultiChanMask registers
used to specify a set of isochronous channels for the single isochronous context in multiChanMode.

10.4.1 Isochronous receive multi-channel support

Any IR DMA context can receive packets from multiple isochronous channels per cycle by enabling ContextCon-
trol.multiChanModeand using the IRMultiChanMask registers. There is a single set of IRMultiChanMask registers avail-
able in the IR DMA controller, and onlyne IR DMA context may be using them at any given time as determined by the
setting of ContextContrahultiChanModebit (see section section 10.3.2).

A context to be enabled for multiChanMode, shall also be enabled for bufferFill and isochHeader modes. If multiChan-
Mode is enabled without bufferFill and isochHeader, the resulting behavior is undefined.

If an IR DMA context is in multi-channel mode, therefore using the IRMultiChanMask registers, the isochronous channel
field in the IR DMA context Match register (section 10.3.3) is ignored.

10.4.1.1 IRMultiChanMask registers (set and clear)

An isochronous channel mask is used to enable packet receives from up to 64 specified isochronous data channel
Software enables receives for any number of isoch channels by writing ones to the corresponding bits in the IRMultiChan-
MaskHiSet and IRMultiChanMaskLoSet addresses. To disable receives for any isoch channels, software writes ones to th
corresponding bits in the IRMultiChanMaskHiClear and IRMultiChanMaskLoClear addresses.

A read of each IRChanMask register shows which channels are enabled; a one for enabled, a zero for disabled. Th
IRMultiChanMask registers are not changed by a bus reset. The state of these registers is undefined following a hard res
or soft reset.

Open HCI Offset 11’h070 - Set
Open HCI Offset 11'h074 - Clear

31 30 29 28) 27 26 25 24/23 22 21 20;19 18 17 16/15 14 13 12)11 10 9 8|7 6 5 4,3 2 1 0

| iESOChanneIGO isoChanneISEIS |
isoChannel61 () () () isoChannel34
isoChannel62 isoChannel33
isoChannel63 isoChannel32

Figure 10-9 — IRMultiChanMaskHi (set and clear) register

Copyright © 1996-2000 All rights reserved. Page 141

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Open HCI Offset 11’h078 - Set
Open HCI Offset 11’h07C - Clear

31 30 29 28,27 26 25 24|23 22 21 20;19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0

| iESOChanneI28 isoChanneILI% |
isoChannel29 () () () isoChannel2
isoChannel30 isoChannell
isoChannel31 isoChannel0

Figure 10-10 — IRMultiChanMaskLo (set and clear) register

10.4.2 Isochronous receive single-channel support

Each isochronous receive DMA context can receive one packet per cycle from one isochronous data channel. Data
chaining across DMA context commands is supported when either the Context®affedtill or the ContextCon-
trol.dualBufferModebits are set.

To configure a context to receive packets from an isochronous channel, write the channel number into the contextMatch
register's channelNumber field.

To start a context on a particular cycle, write the starting cycle time into the ContextMatch register, and enable the
ContextControtycleMatchEnable and ContextContralun bits. When the low order two bits of the bus
CycleTimecycleSecondsand CycleTimeycleCountvalues equal the ContextMatchicleMatch value, the IR DMA
controller will clear the ContextContralkcleMatchEnabléit and the context will begin receiving packets. (see sections
10.3.2 and 10.3.3).

To wait for a packet with specified sync value in the isochronous packet header, set the desired configuration in the sync
field of the ContextMatch register and set the DMA command descriptofigait) field to 2’b11. When the IR DMA
controller detects @ field of 2'b11, it waits until a packet arrives matching the specified sync and directs it to the buffer
identified in the waiting descriptor's dataAddress field. Packets with the specified channel number and tag bits but which
do not match the specified sync are discarded.

When an IR DMA context is stopped either because it reached the end of the context program or because the run bit is

cleared, some packets following the intended stop point may have already entered the receive FIFO. These packets will be
discarded when they reach the bottom of the FIFO, unless another IR DMA context is able to receive them.

10.4.3 Duplicate channels

If more than one IR DMA context specifies receives for packets from the same isochronous channel, the context destina-
tion for that channel’s packets is undefined.

If more than one IR DMA context has the ContextConmtmaltiChanModebit set, then the context destination for
IRmultiChanMask packets is undefined.

If an isochronous channel is specified both in a single channel context and in the multiChannel context, then the packet
will be routed to the multiChannel context and the single channel context shall remain active.

Page 142 Copyright © 1996-2000 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

10.4.4 Determining the number of implemented IR DMA contexts

The number of supported isochronous receive DMA contexts may vary for 1394 Open HCI implementations from a
minimum of four to a maximum of 32. Software can determine the number of supported IR DMA contexts by writing
32’hFFFF_FFFF to the isoRecvtintMask register (see section 6.4.1), and then reading it back. Bits returned as 1's indicat
supported contexts, and bits returned as 0’s indicate unsupported/unimplemented contexts.

10.5 IR Interrupts

Each of the possible 32 isochronous receive contexts can generate an interrupt, therefore each IR DMA context has a k
in the isoRecvIntEvent register. Software can enable interrupts on a per-context basis by setting the correspondin
isoRecvIntMask bit to one.

To efficiently handle interrupts which could conceivably be generated from 32 different contexts in close proximity to one
another, there is a single bit for all IR DMA contexts in the Host Controller IntEvent register. This bit signifies that at
least one but potentially several IR DMA contexts attempted to generate an interrupt. Software can read the
isoRecvIntEvent register to find out which context(s) are involved. For more information on the isoRecvIntEvent register,
see section 6.4.

10.5.1 cyclelnconsistent Interrupt

When the IntEventyclelnconsistentondition occurs (table 6-1), the IR DMA controller shall continue processing
running contexts normally, with the exception that contexts with the ContextContteMatchEnablédit set will remain

inactive and cycleMatch processing shall be disabled. To re-enable cycleMatch processing, software shall first stop the IF
contexts for which cycleMatch is enabled (by clearing ContextControto 0 and waiting for ContextContrattive to

go to 0), then shall clear the IntEvexyiclelnconsisteninterrupt. The stopped IR contexts may then be started.

10.5.2 busReset Interrupt

Bus reset shall not affect isochronous receive contexts.

10.6 IR Data Formats

The Host Controller shall only receive packets which have tcodes that are defined by an approved IEEE 1394 standarc
Packets with undefined tcodes will be dropped.

There are four formats for isochronous receive packets depending upon the setting of the ConteidGaitiedder
ContextControbufferFill, and ContextContradualBufferModebits. If the ContextContrdsochHeaderbit is zero, then
only the isochronous data without any padding, header quadlet or timestamp quadlet is put in the buffer.

Table 10-6 — Isochronous receive fields

field name bits | description

datalLength 16| Indicates the number of bytes in this packet.

tag 2 | The data format of the isochronous data (see IEEE 1394 specification)
chanNum 6 | The channel number this data is associated with.

tcode 4 | The transaction code as received for this packet.

sy 4 | Transaction layer specific synchronization bits.

Copyright © 1996-2000 All rights reserved. Page 143

Isochronous Receive DMA

1394 Open Host Controller Interface Specification / Release 1.1

Table 10-6 — Isochronous receive fields

field name

bits

description

isochronous data

Printed 1/10/00

The data received with this packet. The first byte of data shall appear in the Ig¢ftmost
byte of the first quadlet of this field. The last quadlet should be padded with zerpes, if

bits of cycleSeconds, and the full 13-bits of cycleCount from the most recently re
(or sent) cycle start packet.

10.6.1 bufferFill mode formats

10.6.1.1 IR with header/trailer

prmats,

necessary.

padding If the dataLength mod 4 is not zero, then zero-value bytes have been added ontp the end
of the packet to guarantee that a whole number of quadlets was sent. In three f
the pad bytes are stripped off the packet.

xferStatus 16 | Contains bits [15:0] from the ContextControl register.

timeStamp 16 | The time at which this packet was received into the link, specified by the three Ig

W order
ceived

The format of an isochronous receive packet when ContextCdmiiferFill=1 and ContextContrasochHeaderl is

shown below.

31 30 29 28527 26 25 24|23 22 21 20y19 18 17 16§15 14 13 12§11 10 9 8l7 6 5 433 2 1 0
datalLength tag chanNum tcode sy
- -
- isochronous data -
T .
P = = = == e e e e e e e e e e = = e = = = o
1
1 padding (if needed)
]
xferStatus timeStamp
Figure 10-11 — Receive isochronous format in bufferFill mode with header/trailer

Page 144

Copyright © 1996-2000 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

10.6.1.2 IR without header/trailer

The format of the isochronous receive packet when ContextCdmiifelFill=1 and ContextContratochHeader0 is
shown below.

31 30 29 2827 26 25 24I23 22 21 20519 18 17 16|15 14 13 12511 10 9 87 6 5 433 2 1 O

Data is appended to other byte-aligned data (if any) in the bufferFill mode buffer

- isochronous data -
-1 /r
Padding (if any) is stripped from the packet in this mode.
Figure 10-12 — Receive isochronous format in bufferFill mode without header/trailer

10.6.2 Packet-per-buffer mode and dual-buffer mode formats

10.6.2.1 IR with header/trailer
The format of an isochronous receive packet when ContextCastediHeader1 and either ContextContrbufferFill=0

or ContextControtualBufferModel is shown below. Note that although xferStatus may be written as a side-effect of
writing timeStamp, xferStatus does not contain valid or otherwise useful values.

31 30 29 28'27 26 25 24|23 22 21 20519 18 17 16§15 14 13 12511 10 9 8|7 6 5 433 2 1 O

INVALID timeStamp

dataLength tag chanNum tcode sy

If headers & data are in the same buffer, then the data shall be quadlet aligned.

|
I If headers are in a separate buffer from the data,
. then the data buffer may be byte aligned.
L =
isochronous data T
T Padding (if any) is stripped from the packet in this mode.
Figure 10-13 — Receive isochronous format in packet-per-buffer or dual-buffer mode with header/trailer

Copyright © 1996-2000 All rights reserved. Page 145

Isochronous Receive DMA 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

10.6.2.2 IR without header/trailer

The format of the isochronous receive packet when ContextCdmiifekFill=0 or ContextControflualBufferModel1 and
ContextControisochHeader0 is shown below.

|31 30 29 28§27 26 25 24I23 22 21 20519 18 17 16I15 14 13 12911 10 9 837 6 5 433 2 1 O

Buffers with data only (no headers), like this, may be byte aligned

\\

isochronous data

\\
\\
\\

Padding (if any) is stripped from the packet in this mode.

Figure 10-14 — Receive isochronous format in packet-per-buffer and dual-buffer mode without
header/trailer

Page 146 Copyright © 1996-2000 All rights reserved.

Self ID Receive 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

11. SelfID Receive

The purpose of the SelfID DMA controller is to receive self ID packets during the bus initialization process. The self ID
packets are received using a special pair of DMA registers, the Self ID Buffer Pointer register and the Self ID Count

register.

11.1 Self ID Buffer Pointer Register

The Self ID Buffer Pointer register points to the buffer the SelfID packets will be DMAed into during bus initialization.

Open HCI Offset 11'h064

31 30 29 28, 27 26 25 24‘23 22 21 20/19 18 17 16/15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O

selfIDBufferPtr

Figure 11-1 — Self ID Buffer Pointer register

Table 11-1 — Self ID Buffer Pointer register

field name rwu | reset | description

selfIDBufferPtr | rw | undeff Contains the 2K-byte aligned base address of the buffer in host memory where received
self-ID packets are stored.

11.2 Self ID Count Register

This register keeps a count of the number of times the bus self ID process has occurred, flags self ID packet errors ar
keeps a count of the amount of self ID data in the Self ID buffer.

Open HCI Offset 11’h068

31 30 29 28, 27 26 25 24/ 23 22 21 20;19 18 17 16/15 14 13 1211 10 9 8 ‘7 6 5 4,3 2 1 0
T T

selfIDGeneration selfIDSize uadiets)

T
selfIDError

Figure 11-2 — Self ID Count register
Table 11-2 — Self ID Count register
field name rwu | reset | description
selfIDError ru | undefi When this bit is one, an error was detected during the most recent self ID packet

reception. The contents of the self ID buffer are undefined. This bit is cleared after a
self ID reception in which no errors are detected. Note that an error can be a hdrdware
error or a host bus write error.

selfIDGeneration ru | undef The value in this field increments each time a bus reset is detected. This field fjolls over
to O after reaching 255.

selfIDSize ru | undef This field indicates the number of quadletshave been written into the selflD buffer
for the current selfIDGeneration. This includes the header quadlet and the selflpD data.

Copyright © 1996-2000 All rights reserved. Page 147

Self ID Receive 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

The self ID stream can be (63 devices) * (4 packets/device) * (2 quadlets/packet) = 504 quadlets. If a bus reset is received
part way through a self ID sequence, the old data will be overwritten.

To keep things straight the host controller and software shall each access the Self-ID receive buffer in a complementary
manner. The host controller shall only update the first quadlet of the Self-ID receivedftdfat has written all self ID

packets for given self ID phase. The host controller shall ensure that the generation counter value written into the first
quadlet of the Self-ID receive buffer is consistent with the bus reset associated with the self ID packets just written into
the Self-ID receive buffer. Thus, even if several bus resets occur in quick succession causing multiple streams of Self ID
packets to be resident in a receive FIFO, the host controller shall not write the same value into the selfIDGeneration field
in the first quadlet of the Self-ID receive buffer on successive updates. When the host controller has completed all pending
updates to the Self-ID receive buffer (without error) the SelfIDGeneration field values in the Self-ID receive buffer and
the Self ID Count register shall match. Software shall read the generation counter in memory, then the stream, then the
SelfIDCount register. If the selfIDGeneration field in the Self ID Count register matches the one in the Self-ID receive
buffer, then the self ID stream is consistent.

If the selfIDError flag is set, then there was either a hardware error in receiving the last self ID sequence or a host bus
error while writing to the host buffer, so the self ID data is not trustworthy. Any self ID data received after the error is
flushed. If more than 504 quadlets are received, the selflDSize field is set to 9'h1FF and the selfIDError flag is set. (This
is only possible if > 63 nodes are on the bus... a gross error condition.)

The Host Controller does not verify the integrity of the self-ID packets and software is responsible for performing this
function (i.e., using the logical inverse quadlet).

11.3 Self-ID receive

The self-ID receive format is shown below. The first quadlet contains the time stamp and the self ID generation number.
The remaining quadlets contain data that is received from the time a bus reset ends to the first subaction gap. This is the
concatenation of all the self-ID packets received. Note that the bit-inverted check quadlets are included in the FIFO and
must be checked by the application.

31 30 29 2827 26 25 24§23 22 21 20§19 18 17 16]15 14 13 12311 10 9 8|7 6 5 413 2 1 0

selfIDGeneration timeStamp

:: self ID packet data ::
Figure 11-3 — Self-ID receive format
Table 11-3 — Self-ID receive fields
field name description
selfIDGeneration The value in this field changes each time the first quadlet of the Self-ID receive buffer is

Self-ID receive buffer.

updated by the host controller. It is incremented for each self ID packet stream writterr to the

Page 148 Copyright © 1996-2000 All rights reserved.

Self ID Receive 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table 11-3 — Self-ID receive fields

field name description

timeStamp The three low order bits from cycleTirogrleSecondsand the full 13-bits of
cycleTimercycleCountat the time this status quadlet was generated.

self ID packet data The data received during the selfID process of the bus initialization phase. Note that each
selfID packet includes the data quadlet and inverted quadlet.

11.4 Enabling the SelfID DMA

The RcvSelfID bit in the LinkControl register (see section 5.10, “LinkControl registers (set and clear),”) allows the receiver
to accept incoming self-identification packets. Before setting this bit, software shall ensure that the self ID buffer pointer
register contains a valid address and that the value of the selfIDGeneration field in the first quadlet of the self-ID receive
buffer is configured such that an accidental generation count match will not occur.

11.5 Interrupt Considerations for SelfID DMA
IntEventSelfIDcompleteand IntEvenselfIDComplet@ bits (section 6.1) are set after the host controller updates the first

guadlet of the Self-ID receive buffer. The IntEveetfIDComplet& shall only be cleared through the IntEventClear
register.

11.6 SelfIDs Received Outside of Bus Initialization

SelfID packets received outside of the bus initialization self-ID phase are routed to the AR DMA Request context and use
the PHY packet receive format.

Copyright © 1996-2000 All rights reserved. Page 149

Self ID Receive 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Page 150 Copyright © 1996-2000 All rights reserved.

Physical Requests 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

12. Physical Requests

When a block or quadlet read request or a block or quadlet write request is received, the 1394 Open HCI chip handles th
operation automatically without involving software if the offset address in the request packet header meets a specific se
of criteria listed below. Requests that do not meet these criteria are directed to the AR DMA Request context unles:
otherwise specified. Host Controller registers which are written via physical access to the Host Controller will yield
unspecified results.

The 1394 Open HCI checks to see if the offset address in the request packet header is one of the following.

a) If the offset falls within th@hysical rangethen the offset address is used as the memory address for the block or
guadlet transaction. Physical range is defined by offsets inclusively between a lower bound of 48’h0 and an upper
bound of either the PhysicalUpperBound offset minus one (section 5.15), or 48'h0000 FFFF_FFFF if the
PhysicalUpperBound register is not implemented. If the high order 16-bits of the offset address is 16’h0000 and
PhysicalUpperBound is not implemented, then the lower 32 bits of the offset address are used as the memon
address for the block or quadlet transaction.

Lock transactions and block transactions with a non-zero extended tcode are not supported in this address spac
instead they are diverted to the AR DMA Request context. For read requests, the information needed to formulate
the response packet is passed to the Physical Response Unit. Requests are only accepted if the source node ID
the request has a corresponding bit in the Asynchronous Request Filter registers and Physical Request Filte
registers(section 5.14).

b) If the offset address selects one of the following addresses, the physical request unit will directly handle quadlet
compare-swaps and quadlet reads. Other requests shall be sent an ack_type_error. (See section 5.5.1.)
1) BUS_MANAGER_ID (48'hFFFFF000021C). Local register is BusManagerID.
2) BANDWIDTH_AVAILABLE (48'hFFFFF0000220). Local register is BandwidthAvailable.
3) CHANNELS_AVAILABLE_HI (48'hFFFFF0000224). Local register is ChannelsAvailableHi.
4) CHANNELS_AVAILABLE_LO (48'hFFFFF0000228). Local register is ChannelsAvailablelLo.

c) If the offset address is one of the following addresses, the Physical Regpuiestlershall directly handle quadlet
reads. If HCControBIBimageValidis set to one, block read requests shall be processed as described in
section 5.5.6. Other requests shall be sent an ack_type_error.

1) Config ROM header (1st quadlet of the Config ROM) (48'hFFFFF0000400). Local register is
ConfigROMheader (section 5.5.2).

2) Bus ID (1st quadlet of the Bus_Info_Block) (48'hFFFFF0000404). Local register is BusID (section 5.5.3).

3) Bus options (2nd quadlet of the Bus_Info Block) (48’hFFFFF0000408). Local register is BusOptions
(section 5.5.4).

4) Global unique ID (3rd and 4th quadlets of the Bus_Info Block) (48'hFFFFF000040C and
48'hFFFFF0000410). Local registers are GloballDHi and GloballDLo (section 5.5.5).

5) Configuration ROM (48’'hFFFFF0000414 to 48’'hFFFFFO0007FF). Mapped by the ConfigROMmap register
to a 1K byte block of system memory (section 5.5.6)

When receiving a packet that is destined for the physical response unit with a valid header and a failed data CRC chec
or a data_length error, the Host Controller responds with a “busy” acknowledgment (e.g. ack_busy X if dual phase retry
does not apply).

For information about ack codes for write requests, see section 3.3.2.

Copyright © 1996-2000 All rights reserved. Page 151

Physical Requests 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

12.1 Filtering Physical Requests

Software can control from which nodes it will receive packets by utilizing the asynchronous filter registers. There are two
registers, one for filtering out all requests from a specified set of nodes (AsynchronousRequestFilter register) and one for
filtering out physical requests from a specified set of nodes (PhysicalRequestFilter register). The settings in both registers
have a direct impact on how the AR DMA Request context is used, e.g., disabling only physical receives from a node will
cause all request packets from that node to be routed to the AR DMA Request context. The usage and interrelationship
between these registers is fully described in section 5.14, “Asynchronous Request Filters.”

12.2 Posted Writes

Write requests which are handled by the physical request controller may be acknowledged by the host controller with an
ack_complete before the data is actually written to system memory. This physical posted write condition is described in
section 3.3.3, “Posted Writes.” Information on host bus error handling of physical posted writes is provided in
section 13.2.8, “Physical Posted Write Error.”

12.3 Physical Responses

The response packet generated for a physical read, non-posted write, and lock request shall contain the transaction label
as it appeared in the request, the destination_ID as provided in the request’'s source_ID, and shall be transmitted at the
speed at which the request was received. The source bus ID in the response packet shall be equal to the destination bus ID
from the original request; this shall be either the local bus ID 10'’h3FF or the busNumber field in the Open HCI Node ID
register.

Unlike AR Response packets, physical responses do not track a SPLIT_TIMEOUT expiration time.

12.4 Physical Response Retries

There is a separate nibble-wide MaxPhysRespRetries field in the ATRetries Register (see section 5.4) that tells the Physical
Response Unit how many times to attempt to retry the transmit operation for the response packet when an ack_busy* is re-
ceived from the target node. If the retry count expires, the packet is dropped and softwaneiiied.

12.5 Interrupt Considerations for Physical Requests

Physical read request handling does not cause an interrupt to be generated under any circumstances. Physical write
requests will generate an interrupt when posted write processing yields an error. Lock requests to the serial bus registers
will generate an interrupt when the Host Controller is unable to deliver a lock response packet.

12.6 Bus Reset

On a bus reset, all pending physical requests (those for which ack_pending was sent) shall be discarded. Following a bus
reset, only physical requests to the autonomous CSR resources (see section 5.5) can be handled immediately. Other
physical requests may be processed after software initializes the filter registers (section 5.14).

Page 152 Copyright © 1996-2000 All rights reserved.

Host Bus Errors 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

13. HostBusErrors
Open HCI has three goals when dealing with host bus error conditions:

1) continue transmission and/or reception on all contexts not involved in the error;
2) provide information to software which is sufficient to allow recovery from the error when possible;
3) provide a means of error recovery on a context other than a general chip reset.

13.1 Causes of Host Bus Errors
Host bus errors can generally be classified as one of the following:

1) addressing error (e.g., non-existent memory location)

2) operation error (e.g., attempt to write to read-only memory)

3) data transfer error (e.g., parity or unrecoverable ECC) and

4) time out (e.g., reply on split transaction was not received in time).

Each of these errors can occur at three identifiable stages in the processing of a descriptor:

1) descriptor fetch,
2) data transfer (read or write), and
3) an optional descriptor status update.

In general, the nature of the bus error is not as significant as the stage of descriptor processing in which it occurs. Fc
example, the difference between an addressing error and a data parity error is not significant to the error processing.

13.2 Host Controller Actions When Host Bus Error Occurs

When a host bus error occurs, the Host Controller performs a defined set of actions for all context types. Additionally,
there are a set of actions that are performed that are dependent on the context type. The following sections outline the:
actions.

13.2.1 Descriptor Read Error

When an error occurs during the reading of a descriptor or descriptor block, the behavior of the Host Controller shall be
the same for all but out-of-order pipelining AT contexts. The Host Controller shall set Context@eatiod. one and
ContextControkventto evt_descriptor_read to indicate that the descriptor fetch failed. The unrecoverable error IntEvent
is generated and the context’s IntEvent is not set. Additionally, CommandPtr will be set to point to a descriptor within the
descriptor block in which the error occurred. Since the descriptor could not be read, its xferStatus and resCount will no
be written with current values, and software must refer to ContextCeviatfor the status.

For out-of-order pipelining AT contexts, CommandPtr points to the descriptor block furthest in the list that was fetched
and the descriptor read error may have occurred on any descriptor block before that pointed to by CommandPtr that he
zero status.

13.2.2 xferStatus Write Error

For any type of context, when the Host Controller encounters an error writing the status to a descriptor, it sets
ContextControkdead The values that would have been written to xferStatus of a descriptor are retained in ContextControl
for inspection by system software. The unrecoverable error IntEvent is generated and the context’s IntEvent is not se
regardless of the setting of the interrupt (I) field in the descriptor. Additionally, in all but out-of-order pipelining AT

contexts CommandPtr shall be set to point to a descriptor within the descriptor block in which the error occurred. For out-

Copyright © 1996-2000 All rights reserved. Page 153

Host Bus Errors 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

of-order pipelining AT contexts, CommandPtr points to the descriptor block furthest in the list that was fetched and the
xferStatus write error may have occurred on any descriptor block before that pointed to by CommandPtr that has zero
status.

13.2.3 Transmit Data Read Error

For asynchronous request transmit, asynchronous response transmit and isochronous transmit the Host Controller handles
system data read errors in a similar manner. The Host Controller will not stop processing for the context. Instead, the
event code in the status of the OUTPUT_LAST* descriptor is set to indicate that there was an error and the nature of the
error. The indicated errors are evt_data_read or evt_underrun. If the error occurs before a packet's header is placed in the
output FIFO, the Host Controller can immediately abort the packet transfer, optionally set the descriptor status to
evt_data_read or evt_underrun and move on to the next descriptor block. If, however, the error occurs after the header has
been placed in the output FIFO, the Host Controller will stop placing data in the output FIFO. This will cause the Host
Controller to send a packet with a length that does not agree with the data_length field of the header. If the Host
Controller receives an ack_data_error or ack_busy* from the addressed node, then the Host Controller will substitute
evt_data_read or evt_underrun as appropriate. If the device returns anything other than ack_data_error or ack_busy*, then
the Host Controller will store that value in the status for the packet. It should be noted that this means that if thd addresse
node returns an ack_pending on a block write, the error indication will be lost.

If the packet was a broadcast write, an isochronous packet, or an asynchronous stream packet, no ack code is received
from any node. In this case, the Host Controller assumes that ack_data_error was received and proceeds as outlined above.

Note: Underruns which occur due to host bus latency shall not be construed to be host bus data errors, and as a result such
asynchronous request and response packets may be retried as described in section 5.4.

13.2.4 Isochronous Transmit Data Write Error

A data write error can occur when the Host Controller attempts to write to the address indicated in a STORE_VALUE
descriptor. This error is handled like a data read error with the exception that the event code is set to evt_data_write. The
Host Controller may not begin placing the packet associated with a STORE_VALUE into the output FIFO until the
STORE_VALUE operation is complete. This is to prevent the possibility of having multiple errors that cannot be properly
reported to system software.

13.2.5 Asynchronous Receive DMA Data Write Error

When a host bus error occurs while the Host Controller is attempting to write to either the request or response buffer, the
Host Controller will set the corresponding ContextCondedd and set ContextContrelventto evt data write. The
unrecoverable error IntEvent is generated and the context’s IntEvent is not set regardless of the setting of the interrupt (1)
field in the descriptor. CommandscriptorAddressvill point to the descriptor that contained the buffer descriptor for

the memory address at which the error occurred. Any data in the input FIFO for the context is discarded.

13.2.6 Isochronous Receive Data Write Error

If a data write error occurs for a context that is in packet-per-buffer mode, the Host Controller shall set
ContextControkventto evt_data_write and conditionally update xferStatus of the descriptor in which the error occurred.
Any remaining data in the input FIFO for the packet is discarded. The resCount value in a descriptor that has an error may
not reflect the correct number of data bytes successfully written to memory. Context@deattshall not be set as a

result of a data write error for a context in packet-per-buffer mode.

If a FIFO overrun occurs for a context that is in buffer-fill or dual-buffer mode, the packet shall be treated as if a data
length error had occurred and shall be ‘backed out’ of the receive buffer (xferStatus and resCount not updated) and the
remainder of the packet shall be discarded from the input FIFO. If a data write error occurs for a context in buffer-fill or
dual-buffer mode, the Host Controller shall set ContextCodial to one and set ContextContelent to

Page 154 Copyright © 1996-2000 All rights reserved.

Host Bus Errors 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

evt_data_write. The unrecoverable error IntEvent is generated and the context’s IntEvent is not set regardless of th
setting of the interrupt (I) field in the descriptor. CommandBscriptorAddresswill point to the descriptor that
contained the buffer descriptor for the memory address at which the error occurred. Any data in the input FIFO for the
context is discarded.

13.2.7 Physical Read Error

When an external node does a physical access and the Host Controller’s read of system memory fails, the Host Controlle
shall return an error indication to the requester. The error indication is made by forming a response containing a respons
code of resp_data_error or resp_address_error as appropriate or by truncating the response packet which forces
data_length mismatch at the requester. If the device replies with ack_busy* the host shall retry the packet according t
ATRetriesmaxPhysRespRetrielf the device replies with ack_data_error, the host controller shall not retry the response
and the transaction is complete.

13.2.8 Physical Posted Write Error

As described in section 3.3.3, the physical request controller and the asynchronous receive request context may acknow
edge a write request with ack_complete before the data is actually written to system memory. Since the sending node h:
been notified that the action is complete, when the Host Controller cannot complete a posted write operation due to a ho:
bus error the system shall be notified so that software can recover.

This section describes error reporting for physical posted write errors. Data write errors that occur when transferring
posted write requests from the asynchronous receive FIFO are handled differently than posted physical writes. Refer t
section 13.2.5 for more information.

If an error occurs in writing a physical posted data packet, the Host Controller shall set the IRtStedi¢VriteErmbit to

indicate that an error has occurred and the write shall remain pending. Software can then read the source node ID ar
offset address from PostedWriteAddressLo and PostedWriteAddressHi and then clear PoBtedVriteErr.When
software clears IntEverfostedWriteErrthat write is no longer pending.

A Host Controller implementation may support any number of physical posted writes. However, for each physical posted
write, there shall be an error reporting register to hold the packet’'s source node ID and offset address, if a physical poste
write fails.

If the Host Controller has as many pending physical writes as it has reporting registers additional physical writes may no
be posted. Instead the Host Controller shall either return ack_busy*, or shall return ack_pending and later send a writ
response.

Although the Host Controller may allow several pending writes, error reporting is through a single pair of software visible
registers. If multiple posted write failures have occurred, software will access them one at a time through the
PostedWriteAddress registers. When software clears IntPomtedWriteEry this is a signal to the Host Controller that
software has completed reading of the current contents of PostedWriteAddressLo/Hi and that the Host Controller car
report another error by again setting IntEvieastedWriteErrand presenting a new set of values when software reads
PostedWriteAddressLo/Hi.

Copyright © 1996-2000 All rights reserved. Page 155

Host Bus Errors 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

13.2.8.1 PostedWriteAddress Register (optional)

If IntEventpostedWriteEriis set, then these registers contain the 48 bits of the 1394 destination offset of the write request
that resulted in a host bus error.

Open HCI Offset 11’h03C

31 30 29 28, 27 26 25 24‘23 22 21 20;19 18 17 16/15 14 13 12;11 10 9 8 ‘7 6 5 4,3 2 1 0
T T

sourcelD offsetHi

Figure 13-1 — PostedWriteAddressHi register

Open HCI Offset 11'h038

31 30 29 28 27 26 25 24‘23 22 21 20,19 18 17 16‘15 14 13 12911 10 9 8|7 6 5 4,3 2 1 0

Figure 13-2 — PostedWriteAddressLo register

Table 13-1 — PostedWriteAddress register description

field name rwu | reset description

sourcelD ru | undef The busNumber and nodeNumber of the node that issued the write|request
that was posted and failed.

offsetHi ru | undef The upper 16-bits of the 1394 destination offset of the write requesf that
was posted and failed.

offsetLo ru | undef The low 32-bits of the 1394 destination offset of the write request that was
posted and failed.

The PostedWriteAddress register is a 64-bit register which indicates the bus and node numbers (source ID) of the node
that issued the write that failed, and the address that node attempted to access. ThePosEdwriteErrbit allows
hardware to generate an interrupt when a write fails.

The PostedWriteAddress registers point to a queue in the Host Controller. This queue is accessed by software through the
PostedWriteAddress registers. When a physical posted write fails, its address and node’s source ID shall be placed in this
queue, and IntEverostedWriteErrshall be set. In addition, that packet is removed from the FIFO. By removing the
packet from the FIFO, the Host Controller is not blocked from performing future transactions on the 1394 and host buses.

When software reads from these registers, that entry is removed from the queue, the next address and source ID are placed
at the head of the queue, and another interrupt is generated. When the queue is empty, the Host Controller stops gener-
ating interrupts.

In order to guarantee the accuracy of the Posted Write error registers, software must perform the following algorithm
when the posted write error interrupt is encountered:

1) Read the PostedWriteAddressHi register
2) Read the PostedWriteAddressLo register

Page 156 Copyright © 1996-2000 All rights reserved.

Host Bus Errors 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

3) Clear the IntEvenPostedWriteErrorbit.

This will guarantee that software receives all information it requires about the first posted write, allowing another inter-
rupt to be generated for future posted writes, and simplifies the Host Controller hardware. The Host Controller does not
have to monitor that all three events occur before it moves to the next item in the queue. It may consider the informatior
read once it sees the IntEvétustedWriteErrorit cleared to O.

13.2.8.2 Queue Rules

The Host Controller shall only post as many physical writes as its physical posted write error queue is deep. For example
if the Host Controller has a queue depth of two, it shall only return ack _complete on two physical writes. All other
physical writes must return either ack _pending or ack_busy* event codes. When a previous physical posted write is
successfully transferred into host memory, or when a physical posted write that resulted in an error is removed from the
queue through the method described above by software, the Host Controller can accept more physical posted writes.

PostedWriteErrorHi
Visible Registers
PostedWriteErrorLo
L PostedWriteErrorHi
L PostedWriteErrorLo
Invisible Register
- PostedWriteErrorHi
— PostedWriteErrorLo

Figure 13-3 — Posted Write Error Queue

An example queue is shown in Figure 13-3. In this case, the queue is three entries deep, so this particular Host Controlle
can only handle three outstanding physical posted writes.

Host Controllers should implement physical posted write functionality.

Copyright © 1996-2000 All rights reserved. Page 157

Host Bus Errors 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Page 158 Copyright © 1996-2000 All rights reserved.

PCI Interface (optional) 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Annex A. PClInterface (optional)

A.1 PCI Configuration Space

The Open HCI may be on any number of buses, this appendix only discusses their designs with PCI bus. This sectio
describes the PCI requirements for IEEE 1394 Open Host Controller Interface compliant devices implemented using the
PCI bus (abbreviated as OHC's herein). Only the registers and functions unique to a PCl-based OHC (basically, PC
configuration registers) are described in this appendix. Open HCI compliant 1394 controllers shall adhere to the require
ments given in the PCI Local Bus Specification, Revision 2.1, and should implement the PCI Power Management
Revision 1.1 register interface described in this annex.

Typically, the PCI registers and expansion ROM are only accessed during boot-up and PCI device initialization. They are
not typically accessed during runtime by device drivers. The PCI configuration registers, taken in total, are called the PCI
configuration space. The PCI configuration space for Open HCI is header type 0. Header type 8'h00 is the format for the
device’s configuration header region which is the first 16 dwords of PCI configuration space. Operational registers are
memory mapped into PCI memory address space and pointed to by Base_Adr_0 register in the PCI configuration spac
The operational registers are described in the body of this specification. PCI configuration space is not directly memory
or 1/0 mapped - its access is system dependent. Soft reset issued through an Open HCI control register does not affect t
contents of the PCI configuration space.

A.2 Busmastering Requirements

The 1394 Open HCI controller requires a bursting capable busmaster ability on the PCI bus. If the busmaster bit in the
command register transitions from 1 to zero (see section A.3.1), the PCI logic supporting the Open HCI controller logic
must kill all DMA contexts.

A.3 PCI Configuration Space for 1394 Open HCI With PCI Interface

Figure A-1 shows the PCI configuration space for a 1394 Open HCI controller designed for PCI attachment. The format
of this configuration space must be compliant vl Local Bus Specification, Revision ZRCI Special Interest Group,

1995). Any registers not pointed to by the Base Adr_0 (OHCI registers) pointer are vendor specific. Vendor specific
registers must not be required for correct operation of the 1394 Open HCI controller with a 1394 Open HCI device driver.

Figure A-1 — PCI Configuration Space

Required PCI Vendor
Configuration Space Option
0 Device ID Vendor ID 40 PCI _HCI Control

4 Status Command 0 (vendor opt)
8 Class Code Rev 0 (vendor opt)
c [BIST | Hdr | Lat |Cache 0 (vendor opt)
10 Base Adr 0 - OHCI Regs 0 (vendor opt)
14 base 1 (vendor opt) 0 (vendor opt)
18 base 2 (vendor opt) 0 (vendor opt)
1C base 3 (vendor opt) 0 (vendor opt)
20 base 4 (vendor opt) 0 (vendor opt)
24 base 5 (vendor opt) 0 (vendor opt)
28 Cardbus CIS Ptr (opt) 0 (vendor opt)
2C | Subsystem ID ISubsys. Vendor 1D 0 (vendor opt)
30 Expansion ROM Base I 0 (vendor opt)
34 0 | cap_pur 0 (vendor opt)
38 0 \J 0 (vendor opt)
3c |Max_Lat]vin_cnt| in_pin | int_iine EC 0 (vendor opt)

Copyright © 1996-2000 All rights reserved. Page 159

PCI Interface (optional) 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Figure A-2 shows the resources pointed to by the various Base Adr registers and the Expansion ROM Base Address
register.

Figure A-2 — Pointers to OHCI Resources in PCI Configuration Space

PCI Configuration Space @base_adr 0

Standard Header

OHCI
Internal
Registers

. | Device ID Vendor ID
Status Command

' Class Code Rev
BIST | Hdr | Lat |Cache
! Base Adr 0 - OHCI Regs
base Adr 1(opt)

! base Adr 2 (opt)

base Adr 3 (opt)

' base Adr 4 (opt)

' base Adr 5 (opt)

' Cardbus CIS Ptr (opt)
Subsystem ID ISubsys. Vendor ID} .

!
!
!
!
]
T
~
!
/
!
!
!
! Expansion ROM Base I —
]
!
!
!
!
!
!
)
!
!

@base_adr x

Vendor
Option X

@rom_base

PCI
Expansion

ROM

0 |cap_ptr
! 0
Max_Lat|vin_cnt|int_Pin [int_ine

Vendor Specific PCI Space

vendor dependent
vendor dependent

. | Pm_capabilites | Nxt_Ptr | cap_1D

* |PM_pata| o PMCSR

Required

: vendor dependent
! vendor dependent

VVendor Option

A.3.1 COMMAND Register

This register provides coarse control over the device’s ability to generate and respond to PCI cycles. For the 1394 Open
HCI it is required that the Host Controller support both PCI bus-mastering and memory-mapping of all operational regis-
ters into the memory address space of the PC host. Consequently, thévfielisd BM should always be set to 1'b1

during device configuration.

Once the Host Controller starts processing DMA descriptor lists, the action of resetting eithktSieldBM to 1'b0
will halt all PCI operations from the 1394 OHCI. (Do this carefully). If the fidif is reset to 1'b0, the Host Controller
can no longer respond to any software command addressed to it and interrupt generation is halted.

Table A-1 — COMMAND Register

Read/
Field Bits | Write |Description
0 rw Refer to PCI Local Bus Specification, Revision 2.1, for definition
Memory Space 1 rw | MEMORY SPACE (MS)
Set to 1'b1 so that the Open HCI controller can respond to PCl memory [cycles
BusMaster 2 rw | BUS MASTER (BM)

Set to 1'b1 so that the Open HCI controller can act as a bus-master

3-5 | rw Refer to PCI Specification, Revision 2.1, for definition

Parity Error Response 6 rw | Parity Error Response
Set to 1'b1 if error detection on the PCI bus is desired.

7 rw Refer to PCI Specification, Revision 2.1, for definition

Page 160 Copyright © 1996-2000 All rights reserved.

PCI Interface (optional) 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

A.3.2 STATUS Register

This register tracks the status of PCI bus-related events.

Table A-2 — STATUS Register

Read/
Field Bits | Write |Description
3-0 |r Reserved.
Capabilities 4 r Capabilities

When set, this bit indicates that the Capabilities Pointer Register (CAP_|PTR)
contains an offset into PCI configuration space that represents the beginning
of an extended capabilities list. Since PCI Open HCI implementations should
implement the register interface defined by PCI Power Management Reyision
1.1, this bit should return a value of 1 when read.

- 15-5 | - Seethe PCI Local Bus Specification, Revision 2.1.

A.3.3 CLASS_CODE Register

This register identifies the basic function of the device, and a specific programming interface code for an 1394 Open HCI-
compliant Host Controller.

Table A-3 — CLASS_CODE Register

Read/

Field Bits | Write |Description
Pl 7-0 r PROGRAMMING INTERFACE

A constant value of 8'h10 Identifies the device being a 1394 Open HCI [Host

Controller.
SC 15-8| r SUB CLASS

A constant value of 8'h00 Identifies the device being of IEEE 1394.
BC 23- |r BASE CLASS

16 A constant value of 8’h0C Identifies the device being a serial bus contrq)ller.

A.3.4 Revision_ID Register

The Revision ID must contain the vendor’s revision level of their Open HCI silicon. It is required that each new revision
of silicon receive a new revision ID.

A.3.5 Base_ Adr_0 Register

The Base_Adr_0egister specifies the base address of a contiguous memory space in the PCI memory space of the hos
This memory space is assigned to the operational registers defined in this specification. All of the operational register:
described in this document are directly mapped into the first 2 kilobytes of this memory space. Vendor unique registers
are not allowed within the first 2 KB of this memory space.

Copyright © 1996-2000 All rights reserved. Page 161

PCI Interface (optional) 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Those hardware registers that are used to implement vendor specific features are not covered by this 1394 Open HCI
Specification. Additional vendor unique address spaces may be allocated by adding additional base address registers
beginning at offset h14 in PCI configuration space.

Table A-4 — Base_Adr_0 Register

Read/
Field Bits | Write |Description
IND 0 r MEMORY SPACE INDICATOR

A constant value of 1'b0 Indicates that the operational registers of the device
are mapped into memory space of the main memory of the PC host sygtem

TP 2-1 r This bit must be programmed consistent witlPtGéLocal Bus Specificatior,
Revision 2.1

PM 3 r PREFETCH MEMORY
A constant value of 1'b0 Indicates that there is no support for “prefetchable
memory”

X-4 |rw Default value of 0 and is read only. 10 <= X. Represents a minimum of P-KB
addressing space for the Open HCls operational registers.

OHCI_REG_PTR 31- |rw OHCI Register Pointer
(X+1) Specifies the upper bits of the 32-bit starting base address. This repregents a
minimum of 2-KB addressing space for the Open HCls operational regipters.

X >10. If X is 11 the addressing space is 2KB, if 12 it's 4KB etc...
On x86 systems which will be booting from a 1394 device, the BIOS may|need
to map this address range into the option ROM area below 1M. Requegting

large blocks of address space using the register may result in a non-optimal
system configuration.

A.3.6 CAP_PTR Register

This register is a pointer to a linked list of additional capabilities.

Table A-5 — CAP_PTR Register

Read/
Field Bits | Write |Description
CAP_PTR 7-0 | r Capabilities Pointer

CAP_PTR provides an offset into the function’s PCI configuration spac¢ for
the location of the first item in the capabilities linked list. The CAP_PTR offfset
is double-word aligned so the two least significant bits are always “2'b00.”

This field contains a valid offset if STATUSapabilitiesis set. If no extendef
capabilities are implemented, then this bit shall return zero when read.

Page 162 Copyright © 1996-2000 All rights reserved.

PCI Interface (optional) 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

A.3.7 PCI_HCI_Control Register

This register has 1394 Open HCI specific control bits. Vendor options are not allowed in this register. It is reserved for
Open HCI use only.

Table A-6 — PCI_HCI_Control Register

Read/
Field Bits | Write [Description
PCI_Global_Swap 0 rw | PCI Global Swap Bit

When this bit is set to one, all quadlets read from and written to the PC
interface are byte swapped. PCl addresses, such as expansion ROM ahd PCI
configuration registers, are unaffected by this bit (they are not byte swajpped
under any circumstances). However, Open HCI registers are byte swapped
when this bit is set. The hardware reset value of this bit is zero.

Byte swapping a quadlet reverses the order of the bytes in that quadlet
This bit is not required for motherboard implementations.

reserved 31-1 | r These are reserved bits and shall return zeros when read. If software Writes
these bits, the value written to these bits must be zeros.

A.3.8 PCI Power Management Register Interface

PCI implementations of Open HCI Release 1.1 should implement the latest version of PCI Power Management, and th
register interface described here is specified by PCI Power Management Revision 1.1.

A.3.8.1 Capability ID Register

This register is located at a byte address in PCI configuration space equal to the value of CAP_PTR + 0.

Table A-7 — Capability ID Register

Read/
Field Bits | Write |Description
CAP_ID 70 |r Capability Identifier - This field, when “8’h01” identifies the linked list ite

as being the PCI Power Management registers. It is not required that the PCI
Power Management capability be indicated first in the linked list of capabili-
ties.

A.3.8.2 Next Item Pointer Register (Nxt_Ptr)

This register is located at a byte address in PCI configuration space equal to the value of CAP_PTR + 1.

Table A-8 — Next Item Pointer Register

Read/
Field Bits | Write |Description
NXT_PTR 7-0 |r Next Item Pointer - This field provides an offset into the function’s PCI cpn-
figuration space pointing to the location of the next item in the function’s fapa-

bility list. If there are no additional items in the linked list of capabilities, then
this field shall be set to “8’h00.” 1

Copyright © 1996-2000 All rights reserved. Page 163

PCI Interface (optional) 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

A.3.8.3 Power Management Capabilities Register (PMC)

This register is located at a word address in PCI configuration space equal to the value of CAP_PTR + 2.

Table A-9 — PMC Register

Read/
Field Bits | Write |Description
PME _Support 15- |r PME Support- This field indicates the power states in which the Open HICI
11 function may assert PME#. A value of “0” for any bit indicates that the func-

tion is not capable of asserting the PME# signal while in that power state.
bit (11) - PME_DO. PME# can be asserted from DO
bit (12) - PME_D1. PME# can be asserted from D1
bit (13) - PME_D2. PME# can be asserted from D2
bit (14) - PME_D3hot. PME# can be asserted from D3hot
bit (15) - PME_D3cold. PME# can be asserted from D3cold

D2_Support 10 r When this bit is set, the Open HCI supports the optional D2 power stajte.
D1 Support 9 r When this bit is set, the Open HCI supports the optional D1 power stafe.
AUX_PWR 86 |r Auxiliary Power - This field reports the \(,x power requirements for the

Open HCI function. An optional mechanism to report this information is|via
the PM_DATA Register. If either the PM_DATA register is implemented by the
Open HCI function or the function does not support PME# generation ffom
D3cold (PME_D3cold == 0), then this field shall return a value of “3'b0Q0.”
when read. In all other cases, the following bit assignments apply:

3’b111 - 375mA maximum current required for a 3.3 VQl,y.
3'b110 - 320mA maximum current required for a 3.3 VQl,.
3’b101 - 270mA maximum current required for a 3.3 Vi, .
3’b100 - 220mA maximum current required for a 3.3 Vi, .
3'b011 - 160mA maximum current required for a 3.3 VQl,y.
3'b010 - 100mA maximum current required for a 3.3 VQl,Y.
3’b001 - 55mA maximum current required for a 3.3 Vol,Y.
3’b000 - 0 (self powered)

DSI 5 r Device Specific Initialization- This bit is set to indicate that the function
requires special initialization beyond the standard PCI configuration header
before the generic class device driver is able to use it. Open HCI designfs that
do not require a device specific initialization sequence following the trangition
to the DO_uninitialized state shall return a value of “0” when this bit is r¢ad.

RSVD 4 r Reserved bit shall return zero when read.

PME_CLK 3 r PME Clock - This bit is set to indicate that the Open HCI function requifes

the presence of the PCI clock for PME# generation. It is recommended|that
this bit return a value of “0” when read, indicating the Open HCI function foes
not require the PCI clock to generate PME#.

VERSION 2-0 |r A value of 3'b010 indicates compliance with Revision 1.1 of the PCI Pgwer
Management Interface Specification. Other versions are allowed.

See section A.3.8 for more information.

Page 164 Copyright © 1996-2000 All rights reserved.

PCI Interface (optional) 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

A.3.8.4 Power Management Control/Status (PMCSR)

This register is located at a word address in PCI configuration space equal to the value of CAP_PTR + 4.

Table A-10 — PM Control/Status Register

Read/
Field Bits | Write |Description
PME_STS 15 rc PME Status-This bit is set when the function would normally assert the

PME# signal independent of the state of the PME_EN bit. Writing a “1” tq this
bit will clear it and cause the Open HCI function to stop asserting the PME#
(if enabled). Writing a “0” has no effect.

This bit defaults to “0” if the Open HCI function does not support PME#|gen-
eration from D3cold, and is indeterminate at the time of initial OS boot if the
Open HCI function does support PME# generation from D3cold.

DataScale 14- |rw Data Scale- This field indicates the scaling factor to be used when interpret-
13 ing the value of the PM_DATA register. If the PM_DATA register is not imple-
mented, then this field should return zeros when read.
DataSelect 12-9 rw | Data Select This field is used to select what value to report in the PM_DATA

register when implemented. If the PM_DATA register is notimplementedthen
this field should return zeros when read.

PME_EN 8 rw PME Enabled- This bit is set to enabled the Open HCI function to asseit
PME#. When this bit is zero, PME# assertion is disabled. Functions that flo not
support PME# generation from any power state may implement this bit|as a

read only bit returning “0” when read.

This bit defaults to “0” if the Open HCI function does not support PME#|gen-
eration from D3cold, and is indeterminate at the time of initial OS boot if the
Open HCI function does support PME# generation from D3cold.

RSVD 7-2 r Reserved field shall return zeros when read.

PowerState 1-0 | rw | Power State- This field is used both to determine the current power stafe of
the Open HCI function and to set the function into a new power state. I{ soft-
ware attempts to write an unsupported, optional state to this field, the write
operation must complete normally on the bus; however, the data is disdarded
and no state change occurs. The definition of the field values is given below:

2'b00 - DO
2'b01 - D1
2'b10 - D2
2'b11 - D3hot

A.3.8.5 PMCSR_BSE

This 8-bit register is located at a byte address in PCI configuration space equal to the value of CAP_PTR + 6, and i
included in the PCI Power Management Specification as an extension for PCI to PCI bridges. Open HCI devices shal
implement this byte as a read only value of “8'h00.”

A.3.8.6 PM_DATA

This register is located at a byte address in PCI configuration space equal to the value of CAP_PTR + 7, and provides
mechanism to report various data controlled by the PMD&RSelecand PMCSRDataScalefields. Implementations of

this 8-bit field must either comply with the Power Consumption/Dissipation Reporting Table defined in the PCI Power
Management Specification, or always return “8’h00” when read indicating the PM_DATA register is not implemented.

Copyright © 1996-2000 All rights reserved. Page 165

PCI Interface (optional) 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

A.4 PCIl Power Management Behavior

PCI based 1394 Open Host Controllers should implement PCI Power Management, and implementations that support PCI
Power Management shall exhibit behavior consistent with this Annex.

A.4.1 Power State Transitions

Figure A-3 illustrates the PCI function power state transitions per the PCI Power Management Revision 1.1 specification.

Figure A-3 — PCI Function Power Management State Diagram

Hardware reset or
soft reset N

DO

Uninitialized
DO
Active
internal

reset

Vce removed and
no Vyx applied

The Open HCI enters the DO_Uninitialized power state from thg,pBower state when Vcc is applied and a hardware

or soft reset occurs. The hardware reset may be either a PCI reset input or an optional power-on reset input. Generic Open
HCI software, Open HCI power management software, and register loads from the optional serial ROM contribute to the
initialization that occurs while in the DO_Uninitialized power state. The component that initializes the GUID shall assure
that the initialization is performed in a secure manner. When initializations are complete such that LPS is asserted, the
Open HCI is in the DO_Active power state.

Vee applied and
hardware reset

Power management software transitions the Open HCI through DO_Uninitialized, DO_Active, D1, D2,,gnpoiy@r

states via Open HCI register accesses, and may determine when to place the Open HCI function. i thewe8s state

by removing Vcc. Additional power management policy may be implemented to switch or continuously apply an auxiliary
power supply, ¥,x. to the Open HCI when Vcc is removed. While in this power state, referred to.gg Wish Vax

or D3,pux . the Open HCI exhibits identical behavior as thg,JpBower state and no additional Open HCI hardware is
required to distinguish between R3and D3 -

Per the PCI Power Management specification, the Open HCI function asserts an internal reset during,ttee D3
DO_Uninitialized transition. The only Open HCI context that must be retained,jg &8 through the internal reset tran-
sition to the DO_Uninitialized power state is the PME context (PMEBE. STSand PMCSRPME_EN and the GUID
registers.

Page 166 Copyright © 1996-2000 All rights reserved.

PCI Interface (optional) 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

A.4.2 Power State Definitions

This section defines the Open HCI behavior per power state when programmed using PdieE$&ate Power
management software may use alternate register mechanisms to place the Open HCI in similar states. The Open HCI sh
support the DO_Uninitialized, DO_Active, R and D34 power states and should support the D1 and D2 power states.

Unmasked Open HCI interrupts are signaled to the PCI interface when the Open HCI is in either the DO_Uninitialized or
DO_Active power states. The Open HCI should not implement additional hardware to distinguish between
DO_Uninitialized and DO_Active, which differ only in the assertion state of LPS from the Open HCI to the 1394 Physical
layer. In all other power states, the Open HCI shall not signal functional interrupts to PCI.

Unmasked interrupt events will set PMC8RIE_STSwhen the Open HCI is programmed with PMCEBdRverStateset

to DO, and a PCI PME# wake-up shall be signaled if enabled via PMRBAER.EN.It is possible for one interrupt event

to cause the Open HCI to signal both a PCI interrupt and a PME# to the host. Power management software shall either |
designed to handle this condition or to mask the PME# signal when the Open HCI is in DO.

A LinkOn indication from the 1394 Physical layer will set PMCBRE_STSn Open HCI power states where LPS is
driven deasserted. A LinkOn indication is unexpected in the DO_Active and D1 power states since LPS is asserted fron
the Open HCI in these states. Any unmasked interrupt event shall set PRMISESTSin the D1, DO_Active, or
DO_Uninitialized power states. These characteristics allow for Open HCI wake-up from low power states.

Software shall ensure that all Open HCI transmit contexts are inactive before it attempts to place the Open HCI into the
D1 power state. IEEE1394 bus manager Open HCI nodes shall not be placed into D1. Placing the Open HCI into D1 by
setting PMCSRRowerStateto 2'b01 or setting HCContralckTardyEnableenables the ack_tardy generation. Software
shall ensure that IntEveatk_tardyis zero and should unmask wake-up interrupt events such as Intifyeand
IntEventack_tardybefore placing the Open HCI into D1.

All Open HCI context is retained in through the D1 power state and transitioning back to DO. All 1394 configuration
except the GUID registers is lost through the D2 power state and transitioning back to DO. Once the GUID registers are
initialized after a true device power-on condition, the Open HCI shall preserve the GUID until all power (i.e. Vcc and
Vaux) is removed. The only Open HCI context that must be retained g, @3 D3 5%, and through the internal reset
transition to the DO_Uninitialized power state is the PME context (PMEER. STSand PMCSRPME_EN and the

GUID registers.

The functional and wake-up characteristics for the Open HCI power states are summarized in Table A-11.

Table A-11 — Open HCI Power State Summary

Power State Functional Characteristics Wake-up Characteristics
DO_Uninitialized * LPS is deasserted * Any unmasked interrupt sets PME_STS
* PCI and 1394 initializations occur * A LinkOn indication sets PME_STS
* Unmasked interrupts are fully functional
DO_Active * LPS is asserted * Any unmasked interrupt sets PME_STS

* HCControllinkEnablemay be set
* Fully functional Open HCI device state
* Unmasked interrupts are fully functional

Copyright © 1996-2000 All rights reserved. Page 167

PCI Interface (optional) 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table A-11 — Open HCI Power State Summary

Power State Functional Characteristics Wake-up Characteristics

D1 * LPS is asserted * Any unmasked interrupt sets PME_STS
* HCControllinkEnableis set

* ack_tardy may be returned to config ROM
accesses from 1394 , and ack_tardy shall b
returned to all other asynchronous accesses
addressed to the Open HCI.

* Open HCI shall preserve PCI configuratior
* Open HCI shall preserve 1394 configuratian
* Open HCI shall preserve GUID registers
* Functional interrupts are masked

D2 * LPS is de-asserted * A LinkOn indication sets PME_STS
* Open HCI shall preserve PCI configuration
* 1394 configuration is lost

* Open HCI shall preserve GUID registers
* Functional interrupts are masked

D3yt and D3jpyux * LPS is deasserted * A LinkOn indication sets PME_STS
* PCI configuration is lost

* 1394 configuration is lost

* Open HCI shall preserve GUID registers
* Open HCI shall preserve PME context

* Functional interrupts are masked

D3cold * LPS is deasserted * No wake capability
* All device context/configuration is lost

D

A.4.3 PCl PME# Signal

The PClI PME# signal shall be implemented as an open drain, active low signal that is driven low by the Open HCI to
request a change in its current power management state. PME# has additional electrical requirements over and above
standard open drain signals that allow it to be shared between devices that are powered off and those which are powered
on. Refer to the PCI Power Management specification for more details.

Page 168 Copyright © 1996-2000 All rights reserved.

PCI Interface (optional) 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

A.5 PCI Expansion ROM for 1394 Open HCI

1394 Open Host Controllers used on add-in adapters may need PCI expansion ROMs that provide BIOS, Open Firmware
etc. to boot and configure the card. If this ROM is non-writable and soldered to the card (not socketed), it is also
permitted that the serial ROM image which the Open Host Controller autoloads at boot up can be included in this expan
sion ROM (saving the cost of a serial ROM). If this is done, the serial ROM image must be loaded into the 1394 Open
Host Controller by hardware state machine without software intervention or control. It cannot be modifiable by software
or 1394 devices under any circumstances.

A.6 PCIBus Errors

Any PCI bus error encountered must be reported to the Open HCI operational logic for error handling. The nature of the
error response is context dependent and discussed in the body of the document. No distinction is made between tt
various PCI bus errors. Basically, only one all encompassing error signal is provided to the operational logic by the PCI
specific interface logic. It is the responsibility of the implementer to insure that PCI bus errors are reported in a timely
fashion, consistent with their overall Open HCI implementation, that insures that the errors are associated with the engine
context, etc. that the error should be posted to.

When the “Parity Error Response” bit in the Command Register in PCI Configuration Space is enabled (see sectior
A.3.1), the PCI interface logic in the Open HCI must assert PERR# in accordance wi@ilthecal Bus Specification,
Revision 2..when data with bad parity is received by the 1394 Open HCI controller.

PCI target abort errors shall not be generated by the Host Controller when unable to service requests to certain registe
due to a missing SCLK signal. The error is communicated via IntEReghccessFailfailed read operations shall return
undefined values, and failed write operations shall have undefined effects. Refer to section 1.4.1 for general discussion.

Copyright © 1996-2000 All rights reserved. Page 169

PCI Interface (optional) 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Page 170 Copyright © 1996-2000 All rights reserved.

Summary of Register Reset Values (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

AnnexB. Summary of Register Reset Values (Informative)

The table below is a summary of all register reset values described in this document and is provided for convenience. |
the event of a discrepancy between values shown in this table and the normative part of this document, the normative pa
of this document shall be considered correct.

All registers are shown below in address order. Refer to section 4.2, “Register Map,” for the complete list. Fields for each
register are shown along with their values following a hardware reset, a soft reset and a bus reset. Refer to section 2.1.4
for interpretation of reset values notation. All values for bus reset are N/A (not affected) unless otherwise specified.

Table B-1 — Register Reset Summary

RESET See
Register Fields Hardware Soft Bus clause(s)
Version 5.2

GUID_ROM N/A

version N/A

revision N/A
C;U“)_F{Ol\ﬂ—s.:g

addrReset undef

rdStart 1'b0

rdData undef
M

secondLimit 3'h0

cycleLimit 13’h0

maxPhysRespRetries undef

maxATRespRetries undef

maxATReqRetries undef

Bus Management CSR registers 5.5.1 and
BUS_MANAGER_ID 6'3F 6'3F 63F |°8
BANDWIDTH_AVAILABLE | 13'h1333 13'h1333 | InitialBand-

widthAvail-

able
CHANNELS_AVAILABLE_HI 32’h 32’h InitialChan-
FFFF_FFFA FFFF_FFFF nelsAvail-

ableHi
CHANNELS_AVAILABLE_LO 32’h 32’h InitialChan-
FFFF_FFFH FFFF_FFFH nelsAvaila-

bleLo

CSRRea0Data I O - W

CSRCompareData

undef

551

Copyright © 1996-2000 All rights reserved.

Page 171

Summary of Register Reset Values (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table B-1 — Register Reset Summary

RESET See
Register Fields Hardware Soft Bus clause(s)
CSRControl 551
csrDone 1'bl
csrGenFail undef
selfIDGeneration undef
csrSel undef
ConfigROMhdr 5.5.2
info_length 8'h00 N/A
crc_length 8'h00 N/A
rom_crc_value 16’h0000 N/A

N/ o5
554

BusOptions
max_rec max N/A
implementeg
link_spd max link undef
speed
GUIDHi 5.5.5
node_vendor_ID 24'b0 N/A
chip_ID_hi 8'b0 N/A
oo .
chip_ID_lo 32'b0 N/A
ConfigROMmap 5.5.6
configROMaddr undef
PostedWriteAddressLo 13.2.8.1
offsetLo undef
PostedWriteAddressHi 13.2.8.1
sourcelD undef
undef

offsetHi
5.6

VendorID
VendorUnique N/A
N/A

VendorCompanyID

Copyright © 1996-2000 All rights reserved.

Page 172

Summary of Register Reset Values (Informative)1394 Open Host Controller Interface Specification / Release 1.1

Printed 1/10/00

Table B-1 — Register Reset Summary

SelfIDBuffer

RESET
Register Fields Hardware Soft Bus
HCControl
BIBimageValid 1'b0
noByteSwapData undef
ackTardyEnable 1'b0
programPhyEnable ** see N/A
table 5-12
aPhyEnhanceEnable ** see N/A
table 5-12
LPS 1'b0
postedWriteEnable undef
linkEnable 1'b0
softReset **see table 5-12

IsoXmitintEvent
IsoXmitintMask
IsoRecvIntEvent
IsoRecvIntMask
isoRecW

InitialBandwidthAvailable
InitialBandwidthAvailable \

undef

13’'h1333

See
clause(s)

5.7

111

selfIDBufferPtr undef

11.2

104.1.1

6.1

6.2

SelfIDCount
selfIDError undef *
selfIDGeneration undef *
selfIDSize undef 9'b0 ->*

IRMultiChanMaskHi

IRMultiChanMaskLo
isoChanneM undef

IntEvent
selfIDcomplete undef 1'b0
busReset undef 1'bl
all other bits undef

Intlvlask—

masterintEnable 1'b0
all other bits undef

6.3.1

isoXmitN undef

6.3.2

isoXmitN undef

6.4.1

isoRecW\N undef

6.4.2

5.8

Copyright © 1996-2000 All rights reserved.

Page 173

Summary of Register Reset Values (Informative)1394 Open Host Controller Interface Specification / Release 1.1

Table B-1 — Register Reset Summary

RESET See
Register Fields Hardware Soft Bus clause(s)
InitialChannelsAvailableHi 5.8
InitialChannelsAvailableHi 32’hFFFF_FFFF
InitialChannelsAvailableLo 5.8
InitialChannelsAvailableLo 32’hFFFF_FFFF
FairnessControl 5.9
pri_req undef N/A
LinkControl 5.10
cycleSource 1'b0 ‘ undef
cycleMaster undef
cycleTimerEnable undef
rcvPhyPkt undef
rcvSelfID undef
taglSyncFilterLock 1'b0 undef
NodelD 5.11
iDValid 1'b0 1’b0 -> 1'b1
root 1'b0 1'bl
(conditional)
CPS 1'b0
busNumber 10’h3FF 10’h3FF
nodeNumber undef from phy|
[Phycontrol o 0 TR,
rdDone undef
rdAddr undef
rdData undef
rdReg 1'b0
wrReg 1'b0
regAddr undef
wrData undef
Isochronous Cycle Timer 5.13
cycleSeconds N/A
cycleCount N/A
cycleOffset N/A
AsynchronousRequestFilterHi 5.14.1
AsynchronousRequestFilterLo
asynReqgResourceN 1'b0 1'b0
asynRegResourceAll 1'b0

Page 174

Copyright © 1996-2000 All rights reserved.

Printed 1/10/00

Summary of Register Reset Values (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table B-1 — Register Reset Summary

RESET See
Register Fields Hardware Soft Bus clause(s)
PhysicalRequestFilterHi 5.14.2
PhysicalRequestFilterLo
physReqResourceN ’ 1'b0 ’ 1'b0 ’
physReqResourceAllBuses 1'b0
PhysicalUpperBound 5.15
physUpperBoundOffset undef N/A
CommandPtr 3.1.2,7.2.1,
descriptorAddress ’ undef ’ ’ ?03311921
z undef
AT Request ContextControl 3.1,7.2.2,
AT Response ContextControl 7.2.3
run 1'b0
wake undef
dead 1'b0
active 1'b0 1'b0
event code undef
AR Request ContextControl 3.1,8.3.2
AR Response ContextControl
run 1'b0
wake undef
dead 1'b0
active 1'b0
spd undef
event code undef
IT ContextControl 3.1,9.2.2
cycleMatchEnable undef
cycleMatch undef
run 1'b0
wake undef
dead 1'b0
active 1'b0
event code undef

Copyright © 1996-2000 All rights reserved. Page 175

Summary of Register Reset Values (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Table B-1 — Register Reset Summary

RESET See
Register Fields Hardware Soft Bus clause(s)
IR ContextControl 3.1,10.3.2

bufferFill undef

isochHeader undef

cycleMatchEnable undef

multiChanMode undef

dualBufferMode undef

run 1'b0

wake undef

dead 1'b0

active 1'b0

spd undef

event code undef

IR ContextMatch 10.3.3

tag3 undef

tag2 undef

tagl undef

tag0 undef

cycleMatch undef

sync undef

taglSyncFilter undef

channelNumber undef

Page 176

Copyright © 1996-2000 All rights reserved.

Summary of Bus Reset Behavior (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Annex C. Summary of Bus Reset Behavior (Informative)

This section is a summary of Open HCI bus reset behavior. In the event of a discrepancy between information presente
here and in the normative part of this document, the normative part of this document shall be considered correct.

C.1 Overview

Following a bus reset, node ID’s for nodes on the bus may have changed from the values they had been prior to the bt
reset. Since asynchronous packets include a source and destination node ID, it is imperative that paskaisnodl

ID’s do not go out on the 1394 bus. Isochronous packets do not include any node ID information and therefore must be
allowed to continue un-interrupted after a bus reset. To accomplish this behavior, several things must happen in real-tim
by the Open Host Controller when a bus reset occurs. The following sections describe bus reset behavior for each DM/

type.

C.2 Asynchronous Transmit: Request & Response

While the bus reset interrupt, IntEvdnisResetis active, the Host Controller will inhibit AT Request and AT Response
transmits and flush all packets from the AT Request & AT Response FIFO(s). The host software must wait until both AT
contexts are inactive (ContextContaaltive == 0) before clearing the bus reset interrupt. Refer to sections 7.2.3.1 and
7.2.3.2 for more information.

C.3 Asynchronous Receive: Request & Response

Since all nodes are required to only transmit asynchronous packets that have node ID’s as they were assigned in the mc
recent bus reset/ Self ID process, AR Requests and AR Responses continue to be processed normally by the hardware.
assist software in determining which Request packets arrived before and after the bus reset, the Host Controller inserts
fabricatedbus reset packah the appropriate location in the receive queue. This way, packets which arrive in the receive
buffer after the bus reset packet can be interpreted using the current node ID assignments.

Also upon detection of a bus reset the Host Controller will clear all bits in the Asynchronous Filter regptfor the
Asynchronous Request Filter ldtynReqResourceAtit. If this bit is also 0, receipt of all asynchronous requests which

do not reference the first 1K of CSR config ROM will be prevented and software is responsible for subsequently enabling
the Asynchronous Filter registers as appropriate.

Refer to section 8.4.2.3 for information on the bus reset packet, and section 5.14 for information on the asynchronou:
filter registers.

C.4 Isochronous Transmit

A bus reset does not affect the transmission of isochronous packets, which continue being transmitted for their assigne
channels. It is software’'s responsibility to perform the necessary isochronous resource re-allocation and make an
communication to the talker's and/or receivers’ control registers.

C.5 Isochronous Receive

A bus reset does not affect the receipt of isochronous packets, which continue being received for their assigned channel
It is software’s responsibility to perform the necessary isochronous resource re-allocation and communicate as required t
the talkers and/or receivers.

Copyright © 1996-2000 All rights reserved. Page 177

Summary of Bus Reset Behavior (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

C.6 Self ID Receive

The receipt of self ID packets is part of the bus reset process. When a bus reset occurs, and théusHegsdiit is

set, the IntEvenselfIDCompleteinterrupt is cleared. Once the Self ID phase of bus initialization has completed the
IntEventselfIDCompleteand IntEvenselfIDComplet2 bits are set to inform software that bus initialization self ID
packets have been received. The IntEwatfiDComplet2 bit is only cleared by a write to IntEventClear, and may be

used to eliminate spurious interrupt events caused by fast back-to-back bus resets. See section 11. for further information.

C.7 Physical Requests/Responses

C.7.1 Physical Response

The Host Controller will flush all Physical Asynchronous Transmit Response packets from all asynchronous transmit
FIFOs. The Physical AT Response engine will resume processing incoming requests which arrive following the bus reset.

C.7.2 Physical Requests

Posted write requests, that is, write requests for which ack_complete was sent but which have not yet been processed, will
be processed normally.

All split transaction AR Requests are flushed until a bus reset boundary is detected. After the bus reset boundary, normal
physical receive transactions are resumed.

In response to a bus reset, Host Controller clears the Physical Request Filter registers and physical handling of requests
outside the first 1K of CSR config ROM is disabled. Software is responsible for subsequently enabling the Physical
Request Filter registers as appropriate. See section 5.14.2 for further information.

C.8 Control Registers

In response to a bus reset, the NodiMalid bit is cleared indicating that the Host Controller does not yet have a valid
node ID, and therefore software must not enable asynchronous transmits. When the self ID phase of bus initialization has
completed and the new Node ID has been determined, the PHY returns status which initializesndddBlibmberand

the Host Controller sets NodeliDValid at which point software may restart asynchronous transmit.

A bus reset will also cause the Host Controller's Isochronous Resource Management registers to be reset. Refer to
section 5.5.1 for further information.

Page 178 Copyright © 1996-2000 All rights reserved.

IT DMA Supplement (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

AnnexD. IT DMA Supplement (Informative)

The Open HCI Isochronous Transmit DMA (IT DMA) is documented in section 9.. This Annex provides supplementary
explanation and example, to aid in understanding the IT DMA. It is intended that this Annex will agree completely with
section 9.. If there is any disagreement, this Annex is faulty, and the information in section 9. overrides this Annex.

D.1 IT DMA Behavior

The flowcharts given in the next two sections illustrate the behavior of the IT DMA as documented in section 9.. These
flowcharts are provided in order to help the reader visualize the end result of IT DMA operation, through a set of events
that could occur within the IT DMA. These flowcharts do not specify the IT DMA algorithm, although they should yield
the same output as that specified by section 9.. Furthermore, these flowcharts do not dictate an implementation strateg
The variables such @4 andN do not necessarily correspond to Open HCI registers. The presence of a task on the “Link
side” flowchart or the “DMA side” flowchart does not mandate that the associated logic be implemented in any particular
part of Open HCI. Such distinctions also do not imply anything about clock domains, signal routing, or other implemen-
tation-specific aspects of an Open HCI product.

D.2 IT DMA Flowchart Summary

The output of the IT DMA is illustrated in this Annex using two flowcharts. One flowchart represents activity that is
likely to take place within the DMA engines of a particular Open HCI. The other flowchart represents activity that is
likely to take place in the Link (or “Link Core”) portion of a particular Open HCI. These two flowcharts execute simulta-
neously, with no interdependencies other than those shown by the shared variables, and other shared state such as the Ic
cycle timer or the cycle start value most recently received or sent. Note also that neither flowchart contains an exit or ¢
stop condition. It is intended that both flowcharts begin execution at the same instant, and then remain in operatior
forever. In practice, the flowcharts might be restarted after a full chip reset, or other similar Open HCI event.

The flowcharts do not attempt to capture every possible error condition, such as a dead condition in the IT DMA. Only
the states required for ordinary IT DMA processing are shown, and the level of detail varies somewhat. In this sense
cycle loss and cycle match are considered normal IT DMA events. Bus resets are not specifically identified, but those tha
cause cycle loss will be handled by the flowchart algorithm.

Because the flowcharts do not mandate implementation details, they also do not necessarily show the most optimal way ¢
implementing the IT DMA. For example, the detection of a cycle loss could possibly be performed with less delay, poten-
tially giving the IT DMA more time to recover, thus improving the FIFO readiness for following cycles, and reducing the
chance of further cycle losses. The presentation of these example flowcharts does not preclude a more efficient implemei
tation, within the behavior specified in section 9..

D.3 DMA-side IT DMA flowchart

The following flowchart shows logic for processing the DMA component of the IT DMA in a manner that (when coupled
with the Link side shown below) agrees with that specified in section 9..

Copyright © 1996-2000 All rights reserved. Page 179

IT DMA Supplement (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

The DMA-side flowchart has two major components. The top half consists of a loop that synchronizes the activity of the
DMA side to the correct cycle number. This loop implements a two-cycle workahead. If the FIFO were arbitrarily large,
this algorithm would always keep two cycles worth of packets in the FIFO, in addition to the packets for any cycle
currently being transmitted. The bottom half consists of a loop for each of the IT DMA contexts. This loop processes one
cycles worth of packets, either loading them all into the FIFO, or performing skip processing for all of them.

N = current cycle # + 3

Put 2 cycle end tokens in FIFO

A
A

Lost=0

Flush FIFO

A

)
Skip=0 |«

)
“‘ Lost @W Skip=1
)

NO
A

nol (Skip == 1) OR (Last cycle start # sent / received >= (N - 2)) ’D
YES

C=0 Put cycle end token in FIFO >
]
Y NO

4{ C <#of IT contexts ?)W’ N++ —»CSkip =1 ?>ﬁ> Lost - -

YES

Y

C++ |~ ContextControl [C] . run==17?)

Y YES
Y

r—@ontextControl [C] . cycleMatchEnable == 1 %

YES

A

|
m(ContextControl [C] . cycleMatch == N ?)

YES

Y
ContextControl [C] . cycleMatchEnable = 0

v
\‘WC CommandPtr [C] . Z==07?)47

A

NO
A
(skip==1?)l

YES

Y Y
- CommandPtr [C] = skipAddress [C] CommandPtr [C] packet -> FIFO

Y
CommandPtr [C] = branchAddress [C]

Figure D-1 — IT DMA DMA-Side Flowchart

Page 180 Copyright © 1996-2000 All rights reserved.

IT DMA Supplement (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

A key point in understanding the DMA side flowchart is that neither the top loop nor the bottom loop necessarily corre-
sponds to a single cycle of real time (although, on average, they do). For example, the top loop tries to coordinate two
cycle workahead. In most systems, the FIFO is likely to be too small for full two-cycle workahead. In fact, if the FIFO is
smaller than the largest packet, there will be times when the workahead is zero cycles. The top loop acts as a gate - in tl
rare case that the DMA really achieves two cycles of workahead, the top loop will idle the DMA until there is more work
to do. Similarly, the bottom loop may correspond to more than one cycle of real time. If, in the middle of transmitting a
cycle, a cycle loss occurs, the bottom loop does not exit. It will continue to attempt to transmit the remaining packets for
the original cycle, and will not exit until it does. This behavior agrees with section 9., in that packets are never flushed to
compensate for a cycle loss. Any packet already in the FIFO, or even potentially in the FIFO, will be transmitted (eventu-

ally).

D.3.1 DMA-side top half

The top half of the DMA-side flowchart regulates the IT DMA workahead, if any. The flowchart illustrated will attempt

to maintain a two-cycle workahead. To do this, the algorithm communicates with the Link side in three ways. First, both
sides share access to the local cycle timer and the most recent cycle start packet. Second, both sides share a variable ca
Lost, which is a count of the number of lost cycles that have not yet been handled. Finally, the two sides communicate
through the IT FIFO. The DMA side places packets into the FIFO, and the Link side removes them. The DMA side also
places end-of-cycle tokens in the FIFO, which are removed by the Link side. Many implementations are likely to also use
an end-of-packet token. This flowchart does not show such tokens, and it does not prohibit them.

Because the DMA side wants to work two cycles ahead, when it first starts running it must hold off the Link side, so that
it can try to put two cycles worth of packets in the FIFO. The DMA side immediately places two end-of-cycle tokens into
the FIFO. The Link side will consume one end-of-cycle token per cycle, as detailed below, so these two tokens will hold
off the Link side for two cycles, while the DMA side tries to work ahead.

The DMA side keeps a private variable N, to indicate the cycle number for which it wants to load packets into the FIFO.
If the DMA side were always able to maintain two-cycle workahead, N would usually be two greater than the current
cycle number. More likely, N will vary between zero and two greater than the current cycle number, depending on how
much of the desired two-cycle workahead can actually fit into the FIFO. Because the flowchart is entered in the midst of
some cycle, and it is too late to perform any IT DMA for that cycle, N is initialized to the current cycle number, plus
three.

The DMA side also has a private variable called Skip. This variable is changed only between entries to the bottom-hal
loop, and it controls whether the bottom-half loop will attempt to transmit a cycles worth of packets, or apply skip
processing to a cycles worth of packets.

The top-half loop acts as a gate to the bottom-half loop. The bottom-half can be entered for two reasons. First, the tor
half can determine that the workahead is less than two cycles, because the last cycle start number sent or received
greater than or equal to N minus two. Second, the top-half will immediately enter the bottom half if it learns that there is
a lost cycle to be handled. This condition is indicated by the shared variable Lost being greater than zero. When this i
the case, the DMA side will enter the bottom half loop regardless of the current cycle number, so that skip processing cal
begin as soon as possible. Because cycles cannot be lost more often than once per cycle, it is not possible for the DM
side to achieve excess workahead due to immediately entering the bottom-half loop whenever Lost is greater than zero.

D.3.2 DMA-side bottom half

The bottom-half loop begins by initializing a private variable C to zero. The variable C will count the IT DMA context

index currently being processed. For each context, cycle match processing is applied, if needed, regardless of whether
not a cycle loss has caused cycle skip processing. This causes the cycle match mechanism to correctly start a context e\
if the desired starting cycle is lost. In such a case, the first packet of that context will be subjected to cycle skip

Copyright © 1996-2000 All rights reserved. Page 181

IT DMA Supplement (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

processing, rather than being loaded into the FIFO. Within the bottom-half loop, each active context (including one just
activated due to cycle match) will either load one packet into the FIFO, or receive skip processing. [Nit: an empty cycle
might not load anything into the FIFO.]

When a packet is loaded into the FIFO, the DMA side flowchart will remain in the block “packet -> FIFO” as long as
necessary to complete loading the packet into the FIFO. If the packet is larger than the FIFO, but two-cycle workahead
had been achieved prior to this packet, the DMA side might remain in this block for about two whole cycles. During this
time, the workahead drops from two to zero, and when the end of the packet is finally loaded into the FIFO, the DMA
will immediately begin work on the next packet (same or next cycle).

When skip processing is applied, the DMA side merely replaces a context's command pointer with the skip address of the
descriptor pointed to by the current value of the command pointer.

At the end of the bottom-half loop, the private variable N is incremented, to indicate that one more cycle has been

processed. If the cycle’s packets were loaded into the FIFO normally, an end-of-cycle token is placed in the FIFO.

However, if skip processing was applied, no packets were loaded into the FIFO, and no end-of-cycle token is placed in the
FIFO. As described below, the Link side consumes an end-of-cycle token only for cycles that are not lost, so no token is
required when skip processing is applied.

If skip processing was applied, the DMA side atomically decrements the shared variable Lost, to indicate that one lost
cycle has been handled.

D.4 Link-side IT DMA flowchart

The following flowchart shows logic for processing the Link-side component of the IT DMA in a manner that (when
coupled with the DMA side shown above) agrees with that specified in section 9..

Like the DMA side flowchart, the Link side flowchart keeps a private variable M to indicate what cycle number it wants
to work on next. Because the Link side begins work simultaneously with the DMA side, there will already be a cycle in
progress for which it is too late to possibly do any IT DMA work. So, the Link side initializes M to the current cycle
number plus one.

Like the DMA side, the Link side flowchart has a top half and a bottom half. The top half watches the cycle number, and
tries to keep transmission synchronized with the cycle timer. The bottom half transmits packets from the FIFO. Unlike
the DMA side, the Link side flowchart can move between the top and bottom halves several times during a single cycle’s
worth of packets. However, in the absence of cycle loss, the top and bottom halves each run once per cycle.

D.4.1 Link-side top half

The top-half has two roles. First, it watches for the cycle start event that indicates that isochronous transmission can
begin. When this happens, it sends control to the bottom half. Second, the top half detects cycle losses that occur outside
of the isochronous period. If, while waiting for a cycle start, the top half determines that a cycle loss has occutred, it wil
communicate this to the DMA side, and then wait to begin work on the following cycle.

In normal operation, the top half waits until cycle M occurs, due to the transmission or reception of the cycle start packet
for cycle M. After processing cycle M, or if cycle M is lost, the top half increments M and then begins waiting for the
next cycle. While waiting for cycle M, the top half tries to detect cycle loss. The detection algorithm is simple: If the
cycle timer rolls over twice, without the receipt or transmission of a cycle start packet, then cycle loss has occurred. There

Page 182 Copyright © 1996-2000 All rights reserved.

IT DMA Supplement (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

are various ways to more quickly determine that a cycle has been lost, such as the observance of a subaction gap on 1
bus after the cycle timer has rolled over once. Such strategies, if compatible with section 9., may be valuable optimiza-
tions, but they are not illustrated here.

M = current cycle # + 1

'
—»(Last cycle start # sent / received == M 2) VES

NO
' \
W(Cycle timer rolled over twice ?)

YES

y

Clear roll-over detect (Cycle end token at FIFO head ?}7

YES NO

Lost++ Remove token

)

Yo (' Iso period ?)

YES

YES

L
(Have bus ?)vzs=(FIFO empty ?)

NO NO
A

Iso arbitrate Transmit packet

y
W(Cycle timer rolled over twice ?) (Under@m
YES YES

Y
Delete remainder of packet (if any) from FIFO

Figure D-2 — IT DMA Link-Side Flowchart

Copyright © 1996-2000 All rights reserved. Page 183

IT DMA Supplement (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

D.4.2 Link-side bottom half

The bottom half of the Link-side flowchart attempts to remove packets from the FIFO and transmit them on the 1394 bus.
The bottom half will process at most one cycle’s worth of packets. However, if cycle loss occurs during the bottom half,
it will indicate this to the DMA side and then return to the top half. The remainder (if any) of the cycle that was being
transmitted will be transmitted by a future visit to the bottom half.

The bottom half begins by checking for an end-of-cycle token on the output of the FIFO. If this token is present, then the
bottom half has finished work on transmitting one (possibly empty) cycle. The token is removed, M is incremented, and
the top half now waits for the next cycle.

If the bottom of the FIFO does not contain an end-of-cycle token, then the bottom half of the Link side flowchart will
attempt to transmit packets on the 1394 bus until it does reach an end-of-cycle token. When attempting to transmit
packets, the bottom half first checks to see if the 1394 bus is in an isochronous period. When the bottom half is first
entered, due to the sending or reception of cycle start packet M, the bus should always be in an isochronous period.
However, after some time in the bottom half, the isochronous period may have ended due to a cycle loss. The bottom half
checks this before each packet, and if it finds that the bus is not in an isochronous period, it indicates a cycle loss and
exits to the top half.

If the bottom half has a packet to transmit, and the 1394 bus is in an isochronous period, the bottom half will then attempt
to arbitrate for the 1394 bus. In most silicon implementations, arbitration may have begun earlier, but for the purpose of
this flowchart, this is the point at which arbitration actually matters, so it is shown here. Note that if we have already sent
at least one packet in the bottom half, then we should already have won arbitration at this point.

If we have not yet won arbitration, the bottom half will loop tightly until we do win arbitration, or a cycle loss is detected.

If the cycle timer rolls over twice while we attempt to arbitrate, or if we receive any other indication that the isochronous

period has ended, then we indicate a cycle loss and exit the bottom half. As with the top half, there may be ways to
optimize the detection of a cycle loss, in order to more rapidly signal the DMA side that recovery is required. These

methods are not illustrated here, but as long as they comply with section 9., they are not precluded.

If the bottom half does win arbitration, it must then immediately transmit an isochronous packet. Until this time (while
arbitrating) it did not matter if the FIFO was empty (due to the DMA having fallen behind). In such a case, the DMA may
have caught up and loaded something into the FIFO, in which case transmission can proceed. However, if the FIFO is
empty after arbitration is won, then a cycle loss is indicated.

After winning arbitration without detecting a cycle loss and with some data in the FIFO, the bottom half can then begin
transmitting a packet on the bus. This process continues until a single packet has been transmitted. If, during transmission,
the FIFO underflows, the Link side will clean up the FIFO by eating any leftover parts of the packet that underflowed (but
not any following packets). If an end-of-cycle token does not follow immediately, then a cycle loss will be indicated.
However, an underflow on the last packet of a cycle does not cause a cycle loss (although the packet itself may be lost).

Finally, after transmitting a packet, with or without underflow, the bottom half checks to see if the cycle has been
completed, by looking for an end-of-cycle token at the bottom of the FIFO. If the cycle is complete, the bottom half incre-
ments M and returns to the top half. If the cycle is not complete, the bottom half will attempt to transmit the next packet
for the current cycle. In this case, if an underflow occurred and the bus was lost, a cycle loss will then be indicated, and
the transmission of the next packet will be delayed until the following cycle, as specified in section 9..

Page 184 Copyright © 1996-2000 All rights reserved.

Sample IT DMA Controller Implementation (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed

Annex E. Sample IT DMA Controller Implementation (Informative)

The Open HCI IT DMA controller is documented in Chapter 9.0. This Annex describes a saplgi@mentationof the
IT DMA controller. It is intended to faithfully implement the behaviors specified in Chapter 9.0. If there is any disagree-
ment the information in Chapter 9.0 overrides this Annex.

The basic idea behind this IT DMA implementation is that the DMA side keeps track of how far “ahead” or “behind” it
is from the link side. When the&head_ctris positive the DMA side is working ahead of the link. Whenahead_ctris

negative the DMA side is catching up. The DMA sidecle countis calculated by adding thehead_ctrvalue to a

version of the link sideycle_counthat has been exported to the DMA side. This allows the IT DMA controller to work
reliably after a cycle inconsistent event. Cyclelnconsistent events do not affect contexts that don't care about the cycle
number. There is no need to shutdown all contexts when a cyclelnconsistent condition is detected. Software only needs 1
stop/reconfigure/restart contexts that care about the cycle number.

_ ahead_ctr / match_cycle +
- |
(-4, 1034) (-3, 1035) (-2, 1036) (-1, 1037) (0, 1038) (1, 1039) (2, 1040) (3,1041)
I | | | | | I
| | | | | | |
1034 1035 1036 1037 1038 1039 1040 1041

A

cycle_count

Figure E-1 — DMA Cycle Matching Continuum

Copyright © 1996-2000 All rights reserved. Page 185

Sample IT DMA Controller Implementation (Informative)1394 Open Host Controller Interface Specification / Release 1.1

Printed

This IT DMA controller implementation also maintains a lost courtest (ctr) that indicates the number of cycle to skip
and the logic needed to calculate a current cycle count value for cycle matching purposes.

Link side DMA side
clock domain clock domain
it_skipped
I
| Y
cycle_lost | R lost_ctr
| > Lost Counter £ .
| it_traversed
|
| Y
cycle_sync | + ahead_ctr
Link | > Ahead Counter v o
|
|
| Y
cycle_count | match_cycle
| £ B Cycle Matching Arithmetic v o
|
I

Figure E-2 — IT DMA Controller counters and cycle matching logic

The following pseudo-code is included to describe how the counters can be implemented.

always @(posedge dma_clk or negedge reset_z)
if('reset_z)
ahead_ctr <= #1 0;

else if(it_traverse_done && !cycle_sync && (ahead_ctr != AHEAD_MAX))

ahead_ctr <= #1 ahead_ctr + 1;

else if(lit_traverse_done && cycle_sync && (ahead_ctr '= AHEAD_MIN))

ahead_ctr <= #1 ahead_ctr - 1;

always @(posedge dma_clk or negedge reset_z)
if('reset_z)
lost_ctr <= #1 0;
else if(lit_skipped && cycle_lost && (lost_ctr = LOST_MAX))
lost_ctr <= #1 lost_ctr + 1;
else if(it_skipped && !cycle_lost && (lost_ctr = LOST_MIN))
lost_ctr <= #1 lost_ctr - 1;

/I signed arithmetic assumed here
match_cycle = (cycle_count + ahead_ctr) % 8000;

it_skipped = it_traverse_done && skipping_this_cycle

At start-up time, the IT DMA controller “primes the pump” by writing two “isochronous end” tokens into the isochronous

transmit FIFO. This causes tladead ctrto begin with a value of 2. When the followirmgcle _syncevent is received

from the link-side theahead_ctris decremented. The IT DMA controller attempts to service the IT contexts when

Page 186

Copyright © 1996-2000 All rights reserved.

Sample IT DMA Controller Implementation (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed

ahead_ctris less than 2 or thiest_ctris greater than 0. So the IT DMA controller will service the IT contexts and then
write an isochronous end token (when not skipping) into the FIFO, causiadpeéle_ctrto increment back to 2. The IT
DMA controller is then stalled until the negycle_synar cycle_lostevent.

The IT DMA controller uses a calculated cycle count vamatch_cyclefor matching purposes. It compares the cycleM-

atch value to the link’s cycle_count plus tieead_ctrvalue (modulo 8000). Some care must be taken to synchronize the
updates to theahead_ctrwith the changes to theycle_count This is actually not too difficult since thloycle_synevent

pulse originates from the link, too. The Host Controller designer just needs to be careful about balancing the synchroniza
tion of thecycle_countindcycle syncsignals. Theycle_lostsignal needs to be synchronized, too; but it isn't critical that

it be balanced with the others. The pseudo-code shown above assurmgddhbstis translated into single clock cycle

pulse on thalma_clk

If the DMA side is unable to service the IT contexts for a span of several 1394 cyclaisetiee ctrwill continue to
decrement and become a negative number. At the same time the link side will gepemtstevents and théost_ctr

will increment. When the DMA side is able to continue it will iteratively traverse the IT contexts performing skip
processing untilost_ctr equals 0. It can then start stuffing packets into the isochronous transmit FIF@Qheatd_ctr
equals 2.

(re)start

initialize
FIFO

ahead_ctr < 2?

skip process
IT contexts IT contexts
assert write
it_skipped iso-end token

assert
it_traversed

Figure E-3 — IT DMA Flowchart

Copyright © 1996-2000 All rights reserved. Page 187

Sample IT DMA Controller Implementation (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed

Process IT contexts

=0

i < #Contexts?
Y

underrun
this cycle

process
descriptor

tx without
underrun

y

cmdptri] = cmdptr[i] =
branchAddr skipAddr

'

Figure E-4 — Process IT Contexts Flowchart

Page 188 Copyright © 1996-2000 All rights reserved.

Sample IT DMA Controller Implementation (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed

Skip IT contexts

(Enter)

matchEnable =0

cmdptr[i] =
skipAddr

Figure E-5 — Skip IT Contexts Flowchart

Copyright © 1996-2000 All rights reserved. Page 189

Sample IT DMA Controller Implementation (Informative)1394 Open Host Controller Interface Specification / Release 1.1 Printed

Page 190 Copyright © 1996-2000 All rights reserved.

Extended Config ROM Entries 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

Annex F. Extended Config ROM Entries

This section defines the format of the GUID ROM, if implemented, to provide vendor specific configuration ROM infor-
mation and extended entries through the GUID ROM interface.

The optional GUID ROM s included in Open HCI Release 1.0 to provide a hardware mechanism to load the global
unique identification (GUID) and miscellaneous implementation specific data to the 1394 host controller, and a read-only
interface to the GUID ROM is defined. There is not a standard GUID ROM address where the GUID data resides in the
optional GUID ROM, and this addressing is typically hardwired in the host controller design.

GUID ROM formats compliant to Open HCI Release 1.1 will implement the GUID ROM data map as illustrated in
figure F-1. The region labeled “Mini-ROM” in figure F-1 is further described in this annex, and contains up to 256
quadlets of 1394 configuration data. The GUID data loaded upon power reset is located at a vendor specific region of th
GUID ROM.

GUID ROM Byte Address 0 ,,
vendor specific

region

GUIDROM.miniROM -¢— Mini-ROM Offset 0
Mini-ROM

vendor specific
region

Figure F-1 — GUID ROM data map

F.1 Mini-ROM Data Format

The GUID ROM may contain a Mini-ROM structure which can be used to provide vendor specific 1394 configuration
ROM information. The format of the Mini-ROM is nearly identical to that of the general 1394 configuration ROM, with
a few minor exceptions. Figure F-2 illustrates the format of the Mini-ROM.

Description

Block Offset Offset Offset + 1 Offset+2 | Offset + 3
First 0 reserved miniROM_len ROM_CRC_value (calculated)
Quadlet
Root 4 per 1394 configuration ROM
Directory
Node_Power per 1394 TA Power Specification
Directory
Vendor o per 1394 configuration ROM
Dependent

Figure F-2 — Mini-ROM format

Copyright © 1996-2000 All rights reserved. Page 191

Extended Config ROM Entries 1394 Open Host Controller Interface Specification / Release 1.1 Printed 1/10/00

The first quadlet of the Mini-ROM contains a reserve byte (value of 8'’h00), the miniROM_len field that specifies the
number of additional quadlets in the Mini-ROM following the first quadlet, and the ROM_CRC_value that is calculated
over the entire Mini-ROM contents excluding the first quadlet. The CRC calculation and general Mini-ROM format is that
specified by IEEE1212 and IEEE1394 standards for configuration ROM starting with the root directory. The
bus_info_block is not included in the Mini-ROM.

The Mini-ROM root directory is not required to contain the Module Vendor ID, Node_ Capabilities, and
Node_Unique_ID entries. The Mini-ROM should not duplicate information already available in the 1394 host software,
unless such data makes the Mini-ROM parsable.

The Mini-ROM is a big endian structure in the GUID ROM, that is, the first byte of the Mini-ROM (i.e. Offset 0) is the
reserved field of the fist quadlet as illustrated in figure F-2.

Page 192 Copyright © 1996-2000 All rights reserved.

	1394 Open Host Controller Interface Specification
	PREFACE
	Notice
	Intellectual Property
	Information
	Promoters
	Contributors

	Table of Contents
	List of Figures
	List of Tables
	1.�� Introduction
	1.1�� Related documents
	1.2�� Overview
	1.2.1�� Asynchronous functions
	1.2.2�� Isochronous functions
	1.2.3�� Miscellaneous functions

	1.3�� Hardware description
	Figure�1-1�—� 1394 Open HCI conceptual block diagram
	1.3.1�� Host bus interface
	1.3.2�� DMA
	Table�1-1�—� DMA controller types and contexts
	1.3.2.1�� Asynchronous transmit DMA
	1.3.2.2�� Asynchronous receive DMA
	1.3.2.3�� Isochronous transmit DMA
	1.3.2.4�� Isochronous receive DMA
	1.3.2.5�� Self-ID receive DMA

	1.3.3�� Global unique ID (GUID) interface
	1.3.4�� FIFOs
	1.3.4.1�� Asynchronous transmit FIFOs
	1.3.4.2�� Isochronous transmit FIFO
	1.3.4.3�� Receive FIFOs

	1.3.5�� Link
	Table�1-2�—� Link generated acknowledges

	1.4�� Software interface overview
	1.4.1�� Registers
	1.4.2�� DMA operation
	1.4.3�� Interrupts

	1.5�� 1394 Open HCI Node Offset (Address) Map
	Figure�1-2�—� Node Offset Map

	1.6�� System Requirements
	1.7�� Alignment
	1.7.1�� Data alignment
	1.7.2�� Memory structure and buffer alignment

	2.�� Conventions - Notation and Terms
	2.1�� Notation
	2.1.1�� Conformance glossary
	2.1.2�� Numeric Notation
	2.1.3�� Bit Notation
	2.1.4�� Register Notation
	2.1.4.1�� Read/Write registers
	Table�2-1�—� read/write register field access tags

	2.1.4.2�� Set and Clear registers
	Table�2-2�—� Set and Clear register field access tags

	2.1.4.3�� Register Reset Values
	Table�2-3�—� Register field reset values

	2.1.4.4�� Reserved fields
	2.1.4.5�� Reserved registers
	2.1.4.6�� Register field notation

	2.2�� Terms

	3.�� Common DMA Controller Features
	3.1�� Context Registers
	3.1.1�� ContextControl register
	Figure�3-1�—� ContextControl (set and clear) register format
	Table�3-1�—� ContextControl (set and clear) register description
	Table�3-2�—� Packet event codes

	3.1.1.1�� ContextControl.run
	3.1.1.2�� ContextControl.wake
	3.1.1.3�� ContextControl.active
	3.1.1.4�� ContextControl.dead

	3.1.2�� CommandPtr register
	Figure�3-2�—� CommandPtr register format
	Table�3-3�—� CommandPtr register description
	Table�3-4�—� CommandPtr read values

	3.1.2.1�� Bad Z Value

	3.2�� List Management
	3.2.1�� Software Behavior
	3.2.1.1�� Context Initialization
	3.2.1.2�� Appending to Running List
	3.2.1.3�� Stopping a Context

	3.2.2�� Hardware Behavior
	Figure�3-3�—� Flow Chart for Processing a DMA Context

	3.3�� Asynchronous Receive
	3.3.1�� FIFO Implementation (informative)
	3.3.1.1�� Unrecoverable Error (informative)

	3.3.2�� Ack Codes for Write Requests
	3.3.3�� Posted Writes
	3.3.4�� Retries

	3.4�� DMA Summary
	Table�3-5�—� DMA Summary

	4.�� Register addressing
	Table�4-1�—� 1394 Open HCI register space map
	4.1�� DMA Context Number Assignments
	Table�4-2�—� Asynchronous DMA Context number assignments

	4.2�� Register Map
	Table�4-3�—� Register addresses (Sheet 4 of 4)

	5.�� 1394 Open HCI Registers
	5.1�� Register Conventions
	5.2�� Version Register
	Figure�5-1�—� Version register
	Table�5-1�—� Version register�fields

	5.3�� GUID ROM register (optional)
	Figure�5-2�—� GUID ROM register
	Table�5-2�—� GUID ROM register�fields

	5.4�� ATRetries Register
	Figure�5-3�—� ATRetries register
	Table�5-3�—� ATRetries register �fields

	5.5�� Autonomous CSR Resources
	5.5.1�� Bus Management CSR Registers
	Table�5-4�—� Serial Bus Registers
	Figure�5-4�—� CSR data register
	Figure�5-5�—� CSR compare register
	Figure�5-6�—� CSR control register
	Table�5-5�—� CSR registers’ fields�

	5.5.2�� Config ROM header
	Figure�5-7�—� Config ROM header register
	Table�5-6�—� Config ROM header register fields

	5.5.3�� Bus identification register
	Figure�5-8�—� Bus ID register
	Table�5-7�—� Bus ID register fields

	5.5.4�� Bus options register
	Figure�5-9�—� Bus options register
	Table�5-8�—� Bus options register fields

	5.5.5�� Global Unique ID
	Figure�5-10�—� GlobalUniqueIDHi register
	Figure�5-11�—� GlobalUniqueIDLo register
	Table�5-9�—� GlobalUniqueID register fields

	5.5.6�� Configuration ROM mapping register
	Figure�5-12�—� Configuration ROM mapping register
	Table�5-10�—� Configuration ROM mapping register �fields

	5.6�� Vendor ID register
	Figure�5-13�—� VendorID register
	Table�5-11�—� VendorID register �fields

	5.7�� HCControl registers (set and clear)
	Figure�5-14�—� HCControl register
	Table�5-12�—� HCControl register fields

	5.7.1�� noByteSwapData
	5.7.2�� programPhyEnable and aPhyEnhanceEnable
	Table�5-13�—� programPhyEnable and aPhyEnhanceEnable Examples

	5.7.3�� LPS and linkEnable
	Table�5-14�—� LPS and linkEnable assertion

	5.8�� Bus Management CSR Initialization Registers
	Figure�5-15�—� Initial Bandwidth Available register
	Figure�5-16�—� Initial Channels Available Hi register
	Figure�5-17�—� Initial Channels Available Lo register
	Table�5-15�—� Bus Management CSR Initialization registers’ fields�

	5.9�� FairnessControl register (optional)
	Figure�5-18�—� FairnessControl register
	Table�5-16�—� FairnessControl register fields�

	5.10�� LinkControl registers (set and clear)
	Figure�5-19�—� LinkControl register
	Table�5-17�—� LinkControl register fields�

	5.11�� Node identification and status register
	Figure�5-20�—� Node ID register
	Table�5-18�—� Node ID register fields�

	5.12�� PHY control register
	Figure�5-21�—� PHY control register
	Table�5-19�—� PHY control register fields�

	5.13�� Isochronous Cycle Timer Register
	Figure�5-22�—� Isochronous cycle timer register
	Table�5-20�—� Isochronous cycle timer register fields

	5.14�� Asynchronous Request Filters
	5.14.1�� AsynchronousRequestFilter Registers (set and clear)
	Figure�5-23�—� AsynchronousRequestFilterHi (set and clear) register
	Figure�5-24�—� AsynchronousRequestFilterLo (set and clear) register
	Table�5-21�—� AsynchronousRequestFilter register fields

	5.14.2�� PhysicalRequestFilter Registers (set and clear)
	Figure�5-25�—� PhysicalRequestFilterHi (set and clear) register
	Figure�5-26�—� PhysicalRequestFilterLo (set and clear) register
	Table�5-22�—� PhysicalRequestFilter register fields

	5.15�� Physical Upper Bound register (optional)
	Figure�5-27�—� 48-bit Physical Upper Bound
	Figure�5-28�—� Physical Upper Bound register
	Table�5-23�—� Physical Upper Bound register fields

	6.�� Interrupts
	6.1�� IntEvent (set and clear)
	Figure�6-1�—� IntEvent register
	Table�6-1�—� IntEvent register description (Sheet 3 of 3)

	6.1.1�� busReset

	6.2�� IntMask (set and clear)
	Figure�6-2�—� IntMask register
	Table�6-2�—� IntMask register description�

	6.3�� IsochTx interrupt.registers
	6.3.1�� isoXmitIntEvent (set and clear)
	Figure�6-3�—� isoXmitIntEvent (set and clear) register

	6.3.2�� isoXmitIntMask (set and clear)
	Figure�6-4�—� isoXmitIntMask (set and clear) register

	6.4�� IsochRx interrupt registers
	6.4.1�� isoRecvIntEvent (set and clear)
	Figure�6-5�—� isoRecvIntEvent (set and clear) register

	6.4.2�� isoRecvIntMask (set and clear)
	Figure�6-6�—� isoRecvIntMask (set and clear) register

	7.�� Asynchronous Transmit DMA
	7.1�� AT DMA Context Programs
	7.1.1�� OUTPUT_MORE descriptor
	Figure�7-1�—� OUTPUT_MORE descriptor format
	Table�7-1�—� OUTPUT_MORE descriptor element summary

	7.1.2�� OUTPUT_MORE_Immediate descriptor
	Figure�7-2�—� OUTPUT_MORE-Immediate descriptor format
	Table�7-2�—� OUTPUT_MORE-Immediate descriptor element summary

	7.1.3�� OUTPUT_LAST descriptor
	Figure�7-3�—� OUTPUT_LAST descriptor format
	Table�7-3�—� OUTPUT_LAST descriptor element summary

	7.1.4�� OUTPUT_LAST_Immediate descriptor
	Figure�7-4�—� OUTPUT_LAST-Immediate descriptor format
	Table�7-4�—� OUTPUT_LAST-Immediate descriptor element summary

	7.1.5�� AT DMA descriptor usage
	7.1.5.1�� Command.Z
	Table�7-5�—� Z value encoding

	7.1.5.2�� Command.xferStatus
	7.1.5.3�� Command.timeStamp
	Figure�7-5�—� timeStamp format
	Table�7-6�—� timeStamp description

	7.1.5.3.1�� timeStamp value for Requests
	7.1.5.3.2�� timeStamp value for Ping Requests
	7.1.5.3.3�� timeStamp value for Responses
	Table�7-7�—� Results of timeStamp.cycleSeconds - cycleTimer.cycleSeconds
	Table�7-8�—� timeStamp.cycleCount-cycleTime.cycleCount Example 1
	Table�7-9�—� timeStamp.cycleCount-cycleTime.cycleCount Example 2
	Table�7-10�—� timeStamp.cycleCount-cycleTime.cycleCount Example 3

	7.2�� AT DMA context registers
	7.2.1�� CommandPtr
	Figure�7-6�—� CommandPtr register format

	7.2.2�� ContextControl register (set and clear)
	Figure�7-7�—� ContextControl (set and clear) register format
	Table�7-11�—� ContextControl (set and clear) register description

	7.2.2.1�� Writing status back to context command descriptors

	7.2.3�� Bus Reset
	7.2.3.1�� Host Controller Behavior for AT
	7.2.3.2�� Software Guidelines

	7.3�� ack_data_error
	7.4�� AT Retries
	Figure�7-8�—� Completion Status and Retry Behavior

	7.5�� Fairness
	7.6�� AT Interrupts
	7.7�� AT Pipelining
	7.8�� AT Data Formats
	7.8.1�� Asynchronous Transmit Requests
	7.8.1.1�� No-data transmit
	Figure�7-9�—� Quadlet read request transmit format
	Table�7-12�—� Quadlet read request transmit fields (Continued)

	7.8.1.2�� Quadlet transmit
	Figure�7-10�—� Quadlet write request transmit format
	Figure�7-11�—� Block read request transmit format
	Table�7-13�—� Quadlet transmit fields�

	7.8.1.3�� Block transmit
	Figure�7-12�—� Write request transmit format
	Figure�7-13�—� Lock request transmit format
	Table�7-14�—� Block transmit fields�

	7.8.1.4�� PHY packet transmit
	Figure�7-14�—� PHY packet transmit format

	7.8.2�� Asynchronous Transmit Responses
	7.8.2.1�� No-data transmit
	Figure�7-15�—� Write response transmit format
	Table�7-15�—� Write response transmit fields�

	7.8.2.2�� Quadlet transmit
	Figure�7-16�—� Quadlet read response transmit format
	Table�7-16�—� Quadlet transmit fields�

	7.8.2.3�� Block transmit
	Figure�7-17�—� Block read response transmit format
	Figure�7-18�—� Lock response transmit format
	Table�7-17�—� Block transmit fields�

	7.8.3�� Asynchronous Transmit Streams
	Figure�7-19�—� Asynchronous stream packet format
	Table�7-18�—� Asynchronous stream packet fields�

	8.�� Asynchronous Receive DMA
	8.1�� AR DMA Context Programs
	8.1.1�� INPUT_MORE descriptor
	Figure�8-1�—� INPUT_MORE descriptor format
	Table�8-1�—� INPUT_MORE descriptor element summary

	8.1.2�� AR DMA descriptor usage

	8.2�� bufferFill mode
	Figure�8-2�—� bufferFill receive mode

	8.3�� Asynchronous Receive Context Registers
	8.3.1�� AR DMA CommandPtr register
	Figure�8-3�—� CommandPtr register format

	8.3.2�� AR ContextControl register (set and clear)
	Figure�8-4�—� AR ContextControl (set and clear) register format
	Table�8-2�—� AR ContextControl (set and clear) register description

	8.4�� AR DMA Controller
	8.4.1�� Asynchronous Filter Registers
	8.4.2�� AR DMA Controller processing
	8.4.2.1�� AR DMA Packet Trailer
	Figure�8-5�—� AR DMA packet trailer format
	Table�8-3�—� AR DMA trailer fields

	8.4.2.2�� Error Handling
	8.4.2.3�� Bus Reset Packet
	Figure�8-6�—� AR Request Context Bus Reset packet format
	Table�8-4�—� AR Request Context Bus Reset packet description

	8.5�� PHY Packets
	8.6�� Asynchronous Receive Interrupts
	8.7�� Asynchronous Receive Data Formats
	Table�8-5�—� Asynch receive fields�
	8.7.1�� Asynchronous Receive Requests
	8.7.1.1�� No-data receive
	Figure�8-7�—� Quadlet read request receive format

	8.7.1.2�� Quadlet Receive
	Figure�8-8�—� Quadlet write request receive format
	Figure�8-9�—� Block read request receive format

	8.7.1.3�� Block receive
	Figure�8-10�—� Block write request receive format
	Figure�8-11�—� Lock request receive format

	8.7.1.4�� PHY packet receive
	Figure�8-12�—� PHY packet receive format

	8.7.2�� Asynchronous Receive Responses
	8.7.2.1�� No-data receive
	Figure�8-13�—� Write response receive format

	8.7.2.2�� Quadlet Receive
	Figure�8-14�—� Quadlet read response receive format

	8.7.2.3�� Block receive
	Figure�8-15�—� Block read response receive format
	Figure�8-16�—� Lock response receive format

	9.�� Isochronous Transmit DMA
	9.1�� IT DMA Context Programs
	9.1.1�� IT DMA command descriptor overview
	9.1.2�� OUTPUT_MORE descriptor
	Figure�9-1�—� OUTPUT_MORE command descriptor format
	Table�9-1�—� OUTPUT_MORE descriptor element summary

	9.1.3�� OUTPUT_MORE-Immediate descriptor
	Figure�9-2�—� OUTPUT_MORE-Immediate descriptor format
	Table�9-2�—� OUTPUT_MORE-Immediate descriptor element summary

	9.1.4�� OUTPUT_LAST descriptor
	Figure�9-3�—� OUTPUT_LAST command descriptor format
	Table�9-3�—� OUTPUT_LAST descriptor element summary

	9.1.5�� OUTPUT_LAST-Immediate descriptor
	Figure�9-4�—� OUTPUT_LAST-Immediate command descriptor format
	Table�9-4�—� OUTPUT_LAST-Immediate descriptor element summary

	9.1.6�� STORE_VALUE descriptor
	Figure�9-5�—� STORE_VALUE descriptor
	Table�9-5�—� STORE_VALUE descriptor element summary

	9.1.7�� IT DMA descriptor usage
	Table�9-6�—� Z value encoding

	9.2�� IT Context Registers
	9.2.1�� CommandPtr
	Figure�9-6�—� CommandPtr register format

	9.2.2�� IT ContextControl Register
	Figure�9-7�—� IT DMA ContextControl (set and clear) register format
	Table�9-7�—� IT DMA ContextControl (set and clear) register description

	9.3�� Isochronous transmit DMA controller
	9.3.1�� IT DMA Processing
	Figure�9-8�—� IT DMA summary

	9.3.2�� Prefetching IT Packets
	9.3.3�� Isochronous Transmit Cycle Loss
	9.3.4�� Skip Processing Overflow
	Figure�9-9�—� Isochronous transmit cycle loss example

	9.3.5�� FIFO Underrun
	9.3.6�� Determining the number of implemented IT DMA contexts

	9.4�� Appending to an IT DMA Context Program
	9.5�� IT Interrupts
	9.5.1�� cycleInconsistent Interrupt
	9.5.2�� busReset Interrupt
	9.5.3�� UnrecoverableError Interrupt

	9.6�� IT Data Format
	Figure�9-10�—� Isochronous transmit format
	Table�9-8�—� Isochronous transmit fields�

	10.�� Isochronous Receive DMA
	10.1�� IR DMA Context Programs
	10.1.1�� Buffer-Fill and Packet-per-Buffer Descriptors
	Figure�10-1�—� INPUT_MORE/INPUT_LAST descriptor format
	Table�10-1�—� INPUT_MORE/INPUT_LAST descriptor element summary

	10.1.2�� Dual-Buffer Descriptor
	Figure�10-2�—� DUALBUFFER descriptor format
	Table�10-2�—� DUALBUFFER descriptor element summary

	10.1.3�� Descriptor Z Values
	Table�10-3�—� Z value encoding

	10.2�� Receive Modes
	10.2.1�� Buffer Fill Mode
	Figure�10-3�—� IR Buffer Fill Mode

	10.2.2�� Packet-per-Buffer Mode
	Figure�10-4�—� packet-per-buffer receive mode
	10.2.2.1�� Command.xferStatus and Command.resCount updates

	10.2.3�� Dual-Buffer Mode
	Figure�10-5�—� IR Dual-Buffer Mode

	10.3�� IR Context Registers
	10.3.1�� CommandPtr
	Figure�10-6�—� CommandPtr register format

	10.3.2�� IR ContextControl register (set and clear)
	Figure�10-7�—� IR DMA ContextControl (set and clear) register format
	Table�10-4�—� IR DMA ContextControl (set and clear) register description

	10.3.3�� Isochronous receive contextMatch register
	Figure�10-8�—� IR DMA ContextMatch register format
	Table�10-5�—� IR DMA ContextMatch register description

	10.4�� Isochronous receive DMA controller
	10.4.1�� Isochronous receive multi-channel support
	10.4.1.1�� IRMultiChanMask registers (set and clear)
	Figure�10-9�—� IRMultiChanMaskHi (set and clear) register
	Figure�10-10�—� IRMultiChanMaskLo (set and clear) register

	10.4.2�� Isochronous receive single-channel support
	10.4.3�� Duplicate channels
	10.4.4�� Determining the number of implemented IR DMA contexts

	10.5�� IR Interrupts
	10.5.1�� cycleInconsistent Interrupt
	10.5.2�� busReset Interrupt

	10.6�� IR Data Formats
	Table�10-6�—� Isochronous receive fields
	10.6.1�� bufferFill mode formats
	10.6.1.1�� IR with header/trailer
	Figure�10-11�—� Receive isochronous format in bufferFill mode with header/trailer

	10.6.1.2�� IR without header/trailer
	Figure�10-12�—� Receive isochronous format in bufferFill mode without header/trailer

	10.6.2�� Packet-per-buffer mode and dual-buffer mode formats
	10.6.2.1�� IR with header/trailer
	Figure�10-13�—� Receive isochronous format in packet-per-buffer or dual-buffer mode with header/t...

	10.6.2.2�� IR without header/trailer
	Figure�10-14�—� Receive isochronous format in packet-per-buffer and dual-buffer mode without head...

	11.�� Self ID Receive
	11.1�� Self ID Buffer Pointer Register
	Figure�11-1�—� Self ID Buffer Pointer register
	Table�11-1�—� Self ID Buffer Pointer register

	11.2�� Self ID Count Register
	Figure�11-2�—� Self ID Count register
	Table�11-2�—� Self ID Count register

	11.3�� Self-ID receive
	Figure�11-3�—� Self-ID receive format
	Table�11-3�—� Self-ID receive fields

	11.4�� Enabling the SelfID DMA
	11.5�� Interrupt Considerations for SelfID DMA
	11.6�� SelfIDs Received Outside of Bus Initialization

	12.�� Physical Requests
	12.1�� Filtering Physical Requests
	12.2�� Posted Writes
	12.3�� Physical Responses
	12.4�� Physical Response Retries
	12.5�� Interrupt Considerations for Physical Requests
	12.6�� Bus Reset

	13.�� Host Bus Errors
	13.1�� Causes of Host Bus Errors
	13.2�� Host Controller Actions When Host Bus Error Occurs
	13.2.1�� Descriptor Read Error
	13.2.2�� xferStatus Write Error
	13.2.3�� Transmit Data Read Error
	13.2.4�� Isochronous Transmit Data Write Error
	13.2.5�� Asynchronous Receive DMA Data Write Error
	13.2.6�� Isochronous Receive Data Write Error
	13.2.7�� Physical Read Error
	13.2.8�� Physical Posted Write Error
	13.2.8.1�� PostedWriteAddress Register (optional)
	Figure�13-1�—� PostedWriteAddressHi register
	Figure�13-2�—� PostedWriteAddressLo register
	Table�13-1�—� PostedWriteAddress register description

	13.2.8.2�� Queue Rules
	Figure�13-3�—� Posted Write Error Queue

	Annex A.�� PCI Interface (optional)
	A.1�� PCI Configuration Space
	A.2�� Busmastering Requirements
	A.3�� PCI Configuration Space for 1394 Open HCI With PCI Interface
	Figure�A-1�—� PCI Configuration Space
	Figure�A-2�—� Pointers to OHCI Resources in PCI Configuration Space
	A.3.1�� COMMAND Register
	Table�A-1�—� COMMAND Register

	A.3.2�� STATUS Register
	Table�A-2�—� STATUS Register

	A.3.3�� CLASS_CODE Register
	Table�A-3�—� CLASS_CODE Register

	A.3.4�� Revision_ID Register
	A.3.5�� Base_Adr_0 Register
	Table�A-4�—� Base_Adr_0 Register

	A.3.6�� CAP_PTR Register
	Table�A-5�—� CAP_PTR Register

	A.3.7�� PCI_HCI_Control Register
	Table�A-6�—� PCI_HCI_Control Register

	A.3.8�� PCI Power Management Register Interface
	A.3.8.1�� Capability ID Register
	Table�A-7�—� Capability ID Register

	A.3.8.2�� Next Item Pointer Register (Nxt_Ptr)
	Table�A-8�—� Next Item Pointer Register

	A.3.8.3�� Power Management Capabilities Register (PMC)
	Table�A-9�—� PMC Register

	A.3.8.4�� Power Management Control/Status (PMCSR)
	Table�A-10�—� PM Control/Status Register

	A.3.8.5�� PMCSR_BSE
	A.3.8.6�� PM_DATA

	A.4�� PCI Power Management Behavior
	A.4.1�� Power State Transitions
	Figure�A-3�—� PCI Function Power Management State Diagram

	A.4.2�� Power State Definitions
	Table�A-11�—� Open HCI Power State Summary

	A.4.3�� PCI PME# Signal

	A.5�� PCI Expansion ROM for 1394 Open HCI
	A.6�� PCI Bus Errors

	Annex B.�� Summary of Register Reset Values (Informative)
	Table�B-1�—� Register Reset Summary

	Annex C.�� Summary of Bus Reset Behavior (Informative)
	C.1�� Overview
	C.2�� Asynchronous Transmit: Request & Response
	C.3�� Asynchronous Receive: Request & Response
	C.4�� Isochronous Transmit
	C.5�� Isochronous Receive
	C.6�� Self ID Receive
	C.7�� Physical Requests/Responses
	C.7.1�� Physical Response
	C.7.2�� Physical Requests

	C.8�� Control Registers

	Annex D.�� IT DMA Supplement (Informative)
	D.1�� IT DMA Behavior
	D.2�� IT DMA Flowchart Summary
	D.3�� DMA-side IT DMA flowchart
	Figure�D-1�—� IT DMA DMA-Side Flowchart
	D.3.1�� DMA-side top half
	D.3.2�� DMA-side bottom half

	D.4�� Link-side IT DMA flowchart
	D.4.1�� Link-side top half
	Figure�D-2�—� IT DMA Link-Side Flowchart

	D.4.2�� Link-side bottom half

	Annex E.�� Sample IT DMA Controller Implementation (Informative)
	Figure�E-1�—� DMA Cycle Matching Continuum
	Figure�E-2�—� IT DMA Controller counters and cycle matching logic
	Figure�E-3�—� IT DMA Flowchart
	Figure�E-4�—� Process IT Contexts Flowchart
	Figure�E-5�—� Skip IT Contexts Flowchart

	Annex F.�� Extended Config ROM Entries
	Figure�F-1�—� GUID ROM data map
	F.1�� Mini-ROM Data Format
	Figure�F-2�—� Mini-ROM format

